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Abstract. We study an infinite-dimensional analog of the Jordan decomposition.
This paper is devoted to the motivations and main geometric constructions involved
in such Jordan decompositions. For an arbitrary bounded linear operator in a Banach
space satisfying condition (DCC) (see below) we construct a broader locally convex
space such that

(i) the initial Banach space is densely and continuously imbedded into this space,
(ii) the operator and all possible rational functions of the operator are continuously

extendable to this space, and
(iii) all possible root vectors of the operator belong to this space.
The forthcoming part II of the paper is devoted to problems of completeness of

systems of generalized root vectors.

Introduction

The Jordan theorem on the normal form of a matrix is certainly one of the
central results in linear algebra. This theorem states that root vectors of a linear
operator A in a finite-dimensional complex linear space V form a complete system.
But the natural question arises:

Question. What is a Jordan decomposition in the infinite-dimensional situation?

This problem has been very much studied and discussed [2, 3, 6–10], in particular,
because of its obvious importance in analysis. In his remarkable plenary address [7]
to the International Congress of Mathematicians in Moscow (1966), M. G. Krein
called this problem “the Blue Bird of Functional Analysis”.

¿From the very beginning, there are several difficulties that are mainly related
to adequate generalizations of the main notions involved.

The following objects play the principal role in the finite-dimensional situation:
(i) SpecA, the set of all λ ∈ C such that the equation (A−λI)x = 0 has nontrivial

solutions;
(ii) Eigenvectors = nontrivial solutions of the above equation;
(iii) Speck A, the set of all λ ∈ C such that the equation (A− λI)k+1x = 0 has

nontrivial solutions, i.e., such that (A−λI)kx 6= 0 (in particular, Spec0 A = Spec A);
(iv) Root vectors = nontrivial solutions of the above equations.
The notion of spectrum can be adequately generalized to the infinite-dimensional

setting, but in the initial space, the related eigenvectors may not exist. There is no
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general understanding what part of SpecA should be attributed to Speck A, k ≥ 1,
and, anyway, the related root vectors may also be missing in the initial space. In
this paper we propose natural definitions for all the above notions.

In fact, the Jordan theorem has two layers. The first one is a description of
the algebra generated by the operator A, and the second one deals with the mul-
tiplicity phenomenon of the spectrum. Here we restrict ourselves only to the first
layer and study the structure of the algebra generated by A, leaving aside difficult
problems related to the multiple spectrum (we hope to discuss them in subsequent
publications). Our constructions can be partially generalized to the case of multiple
spectra, but they become much more complicated.

This paper is the first part of our exposition. It is chiefly devoted to motivations
and to the main geometric construction.

Our approach is closely related to the theory of generalized eigenvectors of self-
adjoint operators in a Hilbert space, initiated by I.M. Gelfand and A.G. Kos-
tuchenko [4], see also [1]. The idea of this approach is to extend, in a natural
way, the action of the operator in question to a broader space and try to find the
missing eigenvectors there. The following well-known example gives the flavor of
the approach: consider the operator id/dx in the space L2(R). Its spectrum is the
entire real line R, the functions eiλx are eigenvectors of this operator, but they all
belong not to the initial space L2(R), but to a broader space, say, the space of
bounded functions. Nevertheless, we know that Fourier analysis provides a very
nice and rich theory of expansion of functions in integrals over these eigenvectors.

Similar ideas (involving the study of generalized root vectors) were proposed and
developed by V.P. Maslov and his school see [8, Chapter 1, Section 8]. In fact, the
core of this approach is very understandable: all kinds of spectral decompositions
may be reformulated and studied in terms of suitable functional calculi. This
idea was deeply investigated and developed by I. Colojoara, B. Sz.-Nagy, C. Foias,
F.H. Vasilescu and others (see [2, 9, 10] and references therein).

We suggest a complete implementation of this program. Namely, we construct
an extension of the initial space and show that one can find all possible root vectors
in the constructed space. We show that it is impossible to stay within the setting
of normed spaces if one wishes to find all root vectors, and the natural home for all
root vectors is a nonnormable locally convex space.

A crucial difference between the finite- and the infinite-dimensional situations is
that there are no natural ways to extend an operator in a finite-dimensional space
to a broader space, whereas every infinite-dimensional operator acts simultaneously
in many spaces. It is very difficult to say in advance which space is more natural
for this operator, and thus we do not restrict ourselves to the initial space when
trying to find natural objects, in particular, eigenvectors and root vectors.

To get a better feeling of our approach, let us discuss the following example:
consider the operator

(Af)(t) =
∫ t

0

f(s)ds

in the space of continuous functions on the interval [0, 1]. It is well known that this
operator is quasi-nilpotent, i.e., its spectrum consists of a single point 0. What are
natural eigenvectors and root vectors in this situation? One can readily show that
the δ-functional, supported at 1, is an eigenvector of A. But it already belongs to
a broader space, say, to the space of Borel measures on [0, 1]. We can readily show
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as well that the derivatives of this δ-functional are root vectors of the operator A.
But they belong to even broader spaces, and the space of distributions (which is
a nonnormable locally convex space) contains them all. One can write the Jordan
decomposition for this operator, and it coincides with the expansion in Taylor
series. Note that the Taylor expansion is meaningful not for all functions from
the initial space of continuous functions but only for its dense lineal of analytic
functions. A similar situation is well known in ordinary Fourier analysis: the Fourier
decomposition holds for absolutely integrable functions only, but one has to do some
regularization for other functions from L2(R).

In the second part of our research, we give an analytic approach to our construc-
tions, permitting a much more precise study of the completeness problems for the
generalized root vectors obtained.

After we have constructed the space where all possible root vectors of the oper-
ator A live, we can pose the question whether these root vectors form a complete
system. We show that the answer to this question is equivalent to the “generalized
semisimplicity” of a specially constructed algebra, and we call this property “semi-
intricacy”. For the case in which the root vectors form a complete system (this
means that the related algebra is semi-intricate), we obtain the exact analog of the
Jordan decomposition formula, involving integration with respect to a “generalized
measure”.

The paper is organized as follows. Section 1 contains the necessary preliminaries.
In Sections 2 and 3 we describe the first step in the main construction and present
a theory of expansion of vectors into “integrals” over generalized eigenvectors with
respect to a generalized measure. All results of these sections are actually well
known, we only present them in a way suitable for further considerations. Sec-
tion 4 is devoted to a geometric description of the space containing all possible root
vectors.

In the second part of the paper we continue our investigations. In Section 5 we
study the above construction in analytic terms and introduce some notions needed
for the generalized Gelfand transform. Section 6 is devoted to the generalized
Gelfand transform and to completeness problems for the generalized root vectors.
In Section 7 we apply the previous considerations to obtain a Jordan decomposition
for the general operator.

Preliminary versions of these results were presented at various conferences since
1983: Chernogolovka (1983), Voronezh (1985, 1991), Halle (1988), Novgorod (1989),
Oberwolfach (1990), Sapporo (1990), Jerusalem (1991), and Beer-Sheva (1992). A
draft of this paper [11] has circulated since 1993 as a preprint of the Max-Planck-
Institute (Bonn).

Acknowledgments. I am deeply indebted to S.G. Krein and G.L. Litvinov for
interesting and helpful discussions. I am very thankful to Veronica Zobin for help
and support.

1. Main Notions

Let V, V ′ be a pair of complex Banach spaces. For simplicity, we assume that
either V ′ is the Banach dual space for V or V is the Banach dual space for V ′, and
we prefer not to specify which of them is dual to which (in fact, the only thing we
really require is the continuity of inversion in the algebra of bounded operators).
Let p(·) and p′(·) denote the norms in the spaces V and V ′, respectively.
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Consider a pair of bounded linear operators A : V → V and A′ : V ′ → V ′

satisfying the usual identity: 〈Ax, x′〉 = 〈x,A′x′〉 ∀x ∈ V, ∀x′ ∈ V ′. The norms of
the operators are defined as usual and coincide:

‖A : V → V ‖ = sup{|〈Ax, x′〉| : p(x) ≤ 1, p′(x′) ≤ 1}
= sup{|〈x,A′x′〉| : p(x) ≤ 1, p′(x′) ≤ 1} = ‖A′ : V ′ → V ′‖.

The spectra of operators are also defined as usual and they also coincide:

Spec A = {λ ∈ C : (A− λI) has no bounded inverse }
= {λ ∈ C : (A′ − λI) has no bounded inverse } = Spec A′.

It is well known that Spec A is a compact subset of C.

Definition 1.1. Let Rat(A) be the set of all rational functions with poles contained
in the set C \ Spec A.

Definition 1.2. R(A) = {f(A) : f(·) ∈ Rat(A)}.
We need an equivalent description of the set Spec A in terms of the algebra R(A).

The following assertion is well known.

Proposition 1.3. λ ∈ Spec A if and only if for any f ∈ Rat(A) we have ‖f(A)‖ ≥
|f(λ)|.

As noted above, we consider here the situation of “multiplicity-free spectra” only,
i.e., we assume that the following condition holds.

Double Cyclicity Condition (DCC). There exist ∆ ∈ V and ∇ ∈ V ′ such
that the linear subspace {B∆ : B ∈ R(A)} is σ(V, V ′)-dense in V, and the linear
subspace {B′∇ : B ∈ R(A)} is σ(V ′, V )-dense in V ′.

2. Main construction. The first step

Rigging. Let J(0) denote the completion of R(A) with respect to the operator
norm ‖ · ‖. Then J(0) is a commutative Banach algebra.

Consider the following natural linear mappings:

τ∆ : J(0) → V, τ∆(B) = B∆; τ∇ : J(0) → V ′, τ∇(B) = B′∇.

Both mappings are continuous if we equip V and V ′ with the weak topologies
σ(V, V ′) and σ(V ′, V ), respectively (J(0) is always assumed to be equipped with
the operator norm topology).

Consider the dual mappings (τ∆)′ : V ′ → J(0)′ and (τ∇)′ : V → J(0)′, where
J(0)′ is the Banach dual space for J(0).

It immediately follows from (DCC) that τ∆ and τ∇ are injections with weakly
dense ranges. This implies that (τ∆)′ and (τ∇)′ are also injections with σ(J(0)′, J(0))-
dense ranges. (To prove the injectivity of, say, τ∆, one proceeds as follows: assume
that 0 6= C ∈ J(0) and τ∆(C) = C∆ = 0, then the σ(V, V ′)-closed set KerC is nei-
ther 0 nor V , and, for any B ∈ J(0), we have B Ker C ⊂ KerC. Since ∆ ∈ KerC,
the set {B∆ : B ∈ J(0)} is not σ(V, V ′)-dense in V, and this contradicts (DCC).)
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Thus, we have obtained the following injections with weakly dense ranges:

J(0) τ∆−→ V
(τ∇)′−→ J(0)′, J(0)′

(τ∆)′←− V ′ τ∇←− J(0).

Let V+ (V +) denote the lineal Im τ∆ (Im τ∇), equipped with the norm trans-
ferred from J(0) by the operator τ∆ (respectively, τ∇). Then the mappings τ∆ :
J(0) → V+ and τ∇ : J(0) → V + are isometries.

Thus, we have obtained densely imbedded Banach spaces V+ ⊂ V and V ′ ⊃ V +.
Consider the Banach dual spaces V − = (V+)′ and V− = (V +)′. The dualities
between V+ and V − and between V− and V + are extensions of the initial duality
between V and V ′.

The mapping (τ∇)′ ((τ∆)′) naturally extends to an isometry, still denoted by
(τ∇)′ ((τ∆)′), between V− and J(0)′ (between V − and J(0)′, respectively). Thus,
we have the isometries (τ∇)′ : V− → J(0)′ and (τ∆)′ : V − → J(0)′. This gives us
weakly dense inclusions V+ ⊂ V ⊂ V− and V − ⊃ V ′ ⊃ V +.

Proposition 2.1. For any B,C ∈ J(0) the following statements hold:

(i) BV+ ⊂ V+, B′V + ⊂ V +, τ∆(BC) = Bτ∆(C), τ∇(CB) = B′τ∇(C);

(ii) ‖B : V+ → V+‖ = ‖B : V → V ‖ = ‖B′ : V ′ → V ′‖ = ‖B′ : V + → V +‖;
(iii) the action of the operator B on V is σ(V−, V +)-continuously extendable to

V−, and ‖B : V− → V−‖ = ‖B : V → V ‖; the action of the operator B′ on V ′

is σ(V −, V+)-continuously extendable to V − and ‖B′ : V − → V −‖ = ‖B′ : V ′ →
V ′‖.
Proof. Immediate.

Corollary 2.2. For any B ∈ J(0) we have

Spec B = Spec{B : V → V } = Spec{B : V+ → V+} = Spec{B : V− → V−}
= Spec{B′ : V ′ → V ′} = Spec{B′ : V + → V +} = Spec{B′ : V − → V −}.

Thus, all operators from J(0) have been continuously extended to a broader space
V− without changing their norms, and hence without changing their spectra. This
new space is more natural for these operators, and this is confirmed, in particular,
by Theorem 2.5 below. This theorem is a reformulation of the following simple and
well-known result [5, Section 15]).

Proposition 2.3. λ ∈ Spec A if and only if there exists a (unique) nontrivial
multiplicative functional ϕλ ∈ J(0)′ such that ϕλ(B(A− λI)) = 0 ∀B ∈ J(0).

Remark 2.4. Proposition 2.3 claims that the functionals ϕλ ∈ J(0)′ are eigenvectors
for the coregular action of J(0) on J(0)′ (the coregular action is the action dual to
the regular action of J(0) on itself).

Theorem 2.5. λ ∈ Spec A if and only if there exists eλ ∈ V− such that eλ 6= 0
and Aeλ = λeλ.

Proof. Let ϕλ ∈ J(0)′ be the nontrivial multiplicative functional described in
Proposition 2.3. Take eλ = (τ∇)′−1(ϕλ), then eλ ∈ V−, and we have eλ 6= 0
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since (τ∇)′ is an isometry. Take any x′ ∈ V +, then x′ = τ∇(B) for some B ∈ J(0).
We obtain

〈(A− λI)eλ, x′〉 = 〈(A− λI)(τ∇)′
−1

(ϕλ), τ∇(B)〉 = 〈(τ∇)′
−1

(ϕλ), (A′ − λI)τ∇(B)〉
= 〈(τ∇)′

−1
(ϕλ), τ∇(B(A− λI))〉 = ϕλ(B(A− λI)) = 0,

and thus (A− λI)eλ = 0.

Remark 2.6. Note that 〈eλ,∇〉 = 〈(τ∇)′−1
ϕλ, (τ∇I)〉 = ϕλ(I) = 1, and therefore

we may always assume that eλ is normalized by the condition 〈eλ,∇〉 = 1 ∀λ ∈
Spec A.

Remark 2.7. If we wish to construct only the space V− (without V −) and find the
eigenvectors eλ in V−, then we do not need a vector ∆ ∈ V. This construction
needs only the R(A′)-cyclic vector ∇ ∈ V ′. This already enables us to construct
the injections τ∇ and (τ∇)′ with weakly dense ranges, and obtain the eigenvectors
eλ. This remark will be used in Section 4.

3. Eigenvector expansions

Completeness of the System of Generalized Eigenvectors. We obtained
generalized eigenvectors {eλ, λ ∈ Spec A} belonging to V−, and now we can pose
and study the problem of completeness for this system of vectors. We consider
the completeness in the weakest possible topology, namely, in the weak topol-
ogy σ(V−, V +). This is naturally equivalent to the problem of the σ(J(0)′, J(0))-
completeness for the system of elements {ϕλ : λ ∈ Spec A} in J(0)′.

Let CH(SpecA) denote the Banach algebra of functions that are continuous on
Spec A and holomorphic in its interior. Consider the mapping

R(A) 3 f(A) 7→ f |Spec A ∈ CH(SpecA).

The inequality of Proposition 1.6, supµ∈Spec A |f(µ)| ≤ ‖f(A)‖, shows that the
mapping is well defined and is continuously extendable to the so-called Gelfand
homomorphism ∧ : J(0) → CH(Spec A).

Remark 3.1. It is well known that in this situation the spectrum of the operator A
can be identified with the space M(J(0)) of maximal ideals (= the space of non-
trivial characters) of the algebra J(0), and the function Â : M(J(0)) → Spec A
provides the necessary identification. A version of this identification was already
used in Proposition 2.3: namely, the mapping λ → ϕλ is a one-to-one correspon-
dence between Spec A and the set of nontrivial characters on J(0).

The Gelfand homomorphism can be also described as follows: B̂(λ) = ϕλ(B) for
every B ∈ J(0) and every λ ∈ Spec A.

The subspace Ker∧ is called the radical of the Banach algebra. A commutative
Banach algebra is said to be semisimple if its Gelfand homomorphism is injective,
i.e., the radical Ker∧ is trivial.

Theorem 3.2. The system {ϕλ : λ ∈ Spec A} is σ(J(0)′, J(0))-complete in J(0)′

if and only if the algebra J(0) is semisimple.

Proof. The system {ϕλ : λ ∈ Spec A} is σ(J(0)′, J(0))-complete if and only if
there is no B ∈ J(0) such that B 6= 0 and ϕλ(B) = 0 for every λ ∈ Spec A. This is
equivalent to the condition that Ker∧ = {0}.
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A Refinement of the Completeness Condition. In fact, we can drop all eigen-
vectors arising from the interior points of the spectrum.

Let ∂ Spec A be the boundary of SpecA. Then the restriction mapping r :
CH(SpecA) → C(∂ Spec A) is an isometric imbedding. Therefore, the mappings ∧
and r ◦ ∧ are either both injective or both noninjective. This immediately leads to
the following result.

Proposition 3.3. The systems of generalized eigenvectors {ϕλ : λ ∈ Spec A} and
{ϕλ : λ ∈ ∂ Spec A} are either both σ(J(0)′, J(0))-complete or both σ(J(0)′, J(0))-
incomplete.

Remark 3.4. The mapping r ◦ ∧ : J(0) → C(∂ Spec A) is also called the Gelfand
transform and if this causes no confusion, it is denoted by the same symbol ∧.

Generalized Eigenvector Decomposition. Assume that the system of general-
ized eigenvectors {ϕλ : λ ∈ ∂ Spec A} is σ(J(0)′, J(0))-complete. By Theorem 3.2
and Proposition 3.3, this holds if and only if the algebra J(0) is semisimple, i.e., if
and only if the Gelfand homomorphism ∧ : J(0) → C(∂ Spec A) is injective.

Consider the dual mapping ∧′ : Meas(∂ Spec A) → J(0)′, where Meas(∂ Spec A)
is the space of Borel measures on ∂ Spec A, which is the Banach dual space for
C(∂ Spec A). Since ∧ is injective, it follows that the range of ∧′ is σ(J(0)′, J(0))-
dense. Therefore, each element of J(0)′ can be approximated by a net of elements
of the type ∧′(µα), where {µα} is a net of measures. Therefore, we can treat
the elements of J(0)′ as the ∧′-images of “generalized measures” on ∂ Spec A (as
functionals on Im ∧, which is equipped with the norm transferred from J(0) by the
mapping ∧).

Theorem 3.5. Assume that the set of eigenvectors {ϕλ : λ ∈ ∂ Spec A} is σ(J(0)′, J(0))-
complete (in other words, the algebra J(0) is semisimple). Then for every Φ ∈ J(0)′,
there exists a generalized measure dµΦ on ∂ Spec A (= a bounded functional on the
subalgebra Im ∧ = the limit of a net of measures dµα,Φ on ∂ Spec A) such that for
every B ∈ J(0) we have

Φ(B) =
∫

∂ Spec A

ϕλ(B)dµΦ(λ)
(

= lim
α

∫

∂ Spec A

ϕλ(B)dµα,Φ(λ)
)

.

Proof. The mapping ∧ is an isomorphism between the algebras J(0) and Im∧. The
generalized measure dµΦ in question is just (∧′)−1(Φ), as can readily be verified:

Φ(B) = (∧′)−1(Φ)(B̂) =
∫

∂ Spec A

B̂(λ)dµΦ(λ) =
∫

∂ Spec A

ϕλ(B)dµΦ(λ).

Remark 3.6. The above formula may be treated as an eigenvector decomposition,
where the integral is understood in the σ(J(0)′, J(0))-sense:

Φ =
∫

∂ Spec A

ϕλ dµΦ(λ).

Now we return to the spaces V, V±, and V ±. As above, eλ (eλ) denote the
generalized eigenvectors of A (of A′) (λ ∈ Spec A = Spec A′; eλ ∈ V−, eλ ∈ V −).
The eigenvectors are normalized as usual: 〈eλ,∇〉 = 1, 〈∆, eλ〉 = 1 ∀λ ∈ Spec A.

We want to decompose an element of V into an “integrals” of eλ over ∂ Spec A.
Generally speaking, this is impossible for an arbitrary element of V, but it turns
out to be possible for elements of the dense lineal V+.
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Theorem 3.7. There exists a generalized measure dµ∆,∇ on ∂ Spec A (= a bounded
functional on the subalgebra Im ∧ ⊂ C(∂ Spec A)) such that, for every x ∈ V+ and
every x′ ∈ V +, we have

〈x, x′〉 =
∫

∂ Spec A

〈x, eλ〉〈eλ, x′〉 dµ∆,∇(λ)
(

or, x =
∫

∂ Spec A

〈x, eλ〉 eλ dµ∆,∇(λ)
)

.

Proof. Since x ∈ V+ and x′ ∈ V +, it follows that there exist B,C ∈ J(0) such
that x = B∆, x′ = C ′∇. Consider the functional on J(0) given by D 7→ 〈D∆,∇〉.
This linear functional is clearly bounded, and therefore there exists a generalized
measure dµ∆,∇ on ∂ Spec A such that

〈D∇, ∆〉 =
∫

∂ Spec A

D̂(λ)dµ∆,∇(λ).

By the normalization conditions we have

〈x, x′〉 = 〈B∆, C ′∇〉 = 〈CB∆,∇〉 =
∫

∂ Spec A

(ĈB)(λ) dµ∆,∇(λ) =
∫

∂ Spec A

Ĉ(λ)B̂(λ) dµ∆,∇(λ)

=
∫

∂ Spec A

Ĉ(λ)〈eλ,∇〉B̂(λ)〈∆, eλ〉 dµ∆,∇(λ) =
∫

∂ Spec A

〈Ceλ,∇〉〈∆, B′eλ〉 dµ∆,∇(λ)

=
∫

∂ Spec A

〈B∆, eλ〉〈eλ, c′∇〉 dµ∆,∇(λ) =
∫

∂ Spec A

〈x, eλ〉〈eλ, x′〉 dµ∆,∇(λ).

4. Root vectors. Geometric constructions

What can be done in the case of a nonsemisimple algebra J(0)? Eigenvectors
are definitely unsufficient here.

The finite-dimensional situation suggests that we must complement the eigen-
vectors by root vectors, which are nontrivial solutions of equations (A−λI)kx = 0,
k = 1, 2, . . . . But these vectors can be absent. The main idea of the preceding
sections was to continuously extend the action of all related operators to a broader
space and try to find the missing vectors there. We show how to construct the
desired broader spaces.

In this section we describe the construction in geometric terms.
We have started from a space V and an operator A yielding (DCC). We have

managed to construct a broader space V− and extend the action of A to the space
V− by continuity. Then for every λ ∈ Spec A we have found the related eigenvector
eλ ∈ V−, Aeλ = λeλ. Let Eλ denote the related eigensubspace; it is one-dimensional
due to (DCC). Consider the quotient space V−/Eλ. The operator A can naturally
be lifted to V−/Eλ. Let A1,λ be the lifted operator: A1,λ : V−/Eλ −→ V−/Eλ.

There are two possibilities:

λ ∈ Spec A1,λ,(i)

λ /∈ Spec A1,λ.(ii)

If (ii) holds, then we cannot even expect that an eigenvector of the operator A1,λ

with the eigenvalue λ exists, and hence the related associate vector of the initial
operator A cannot exist. If (i) holds, then we may expect the existence of the
related eigenvector.

Let us study case (i).
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Definition 4.1. We write λ ∈ Spec1 A if λ ∈ Spec A1,λ.

We can readily present examples in which there are no eigenvectors in V−/Eλ

with eigenvalue λ ∈ Spec1 A, and thus there are no related associate vectors in V−.
What can we do? As was already shown in Theorem 2.5, we can extend the op-

erator A1,λ by continuity to a broader space (V−/Eλ)− and find the missing eigen-
vector there. As was explained in Remark 2.7, to construct the space (V−/Eλ)−
we really need only a cyclic vector in

E⊥
λ = {y ∈ V + : ∀x ∈ Eλ 〈x, y〉 = 0},

which is a predual space of V−/Eλ (one can readily see that (E⊥
λ )′ = V−/Eλ).

Let us first construct everything in terms of the algebra J(0) and then use the
rigging. Thus, (τ∇)′ is an isometry of V− onto J(0)′, and (τ∇)′Eλ = {νϕλ : ν ∈ C}.
Let (τ∇λ )′ be the natural isometry between the quotient space V−/Eλ and the space

J(0)′/{νϕλ : ν ∈ C} = ({νϕλ : ν ∈ C}⊥)′ = (Ker ϕλ)′.

Let A(0) be the operator of multiplication by A in the algebra J(0). In this case
the operator given by (τ∇)′A(τ∇)′−1

, which corresponds to the operator A : V− →
V−, is just (A(0))′. This can be verified as follows: for any Φ ∈ J(0)′ and any
B ∈ J(0) we have

{[(τ∇)′A(τ∇)′
−1

](Φ)}(B) = 〈(τ∇)′
−1

(Φ), A′τ∇(B)〉 = 〈(τ∇)′
−1

(Φ), τ∇(BA)〉
= Φ(BA) = Φ(A(0)B).

Let A(1, λ) be the restriction of the operator A(0) to the subspace Ker ϕλ. The
operator (τ∇λ )′A1,λ(τ∇λ )′−1 is obviously dual to the operator A(1, λ). In particular,
Spec A(1, λ) = Spec A1,λ.

Thus, we have a pair of Banach spaces, (Ker ϕλ)′ and Ker ϕλ, and a bounded
linear operator A(1, λ) : Ker ϕλ → Ker ϕλ.

Now we must define the algebras Rat(A(1, λ)) and R(A(1, λ)), see Definitions
1.1 and 1.2. To this end we must determine the set SpecA(1, λ), see Lemma 4.3
below.

The proof of Lemma 4.3 is based on a natural direct decomposition of the algebra
J(0). This decomposition will be repeatedly exploited in this paper.

Proposition 4.2. J(0) = {νI : ν ∈ C} ⊕Kerϕλ.

Proof. For any X ∈ J(0) we have X = ϕλ(X) · I+ (X −ϕλ(X) · I). Obviously, the
second term belongs to Ker ϕλ.

Lemma 4.3. Spec A ⊃ Spec A(1, λ) ⊃ (SpecA) \ {λ}.
Proof. If µ 6∈ Spec A, then (A−µI)−1 ∈ J(0), and the subspace Ker ϕλ is invariant
under multiplication by (A − µI)−1, which implies µ 6∈ Spec A(1, λ). Therefore,
Spec A ⊃ Spec A(1, λ).

If µ 6= λ and µ 6∈ Spec A(1, λ), then we can construct a bounded operator in J(0)
that is inverse to the multiplication by (A−µI), which implies that Spec A(1, λ) ⊃
(Spec A) \ {λ}.
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In order to construct this operator, we must prove that the equation (A−µI)B =
C has a unique solution B ∈ J(0) for any C ∈ J(0).

Decomposing the entries according to Proposition 4.2, we obtain

(A− µI)(ϕλ(B)I+ (B − ϕλ(B)I)) = ϕλ(C)I+ (C − ϕλ(C)I)

or ϕλ(B)(A−λI)+(λ−µ)ϕλ(B)I+(A−µI)(B−ϕλ(B)I) = ϕλ(C)I+(C−ϕλ(C)I).
Here the first and the third terms in the left-hand side belong to Ker ϕλ, and
therefore (λ−µ)ϕλ(B) = ϕλ(C) and ϕλ(B)(A−λI)+(A(1, λ)−µI)(B−ϕλ(B)I) =
C − ϕλ(C)I. Thus,

ϕλ(B) = (λ−µ)−1ϕλ(C), B−ϕλ(B)I = (A(1, λ)−µI)−1[C−ϕλ(C)I−ϕλ(B)(A−λI)].

Since µ 6∈ Spec A(1, λ), it follows that there exists a bounded operator

(A(1, λ)− µI)−1 : Ker ϕλ → Ker ϕλ.

Hence,

B = ϕλ(B)I+ (B − ϕλ(B)I)
= (λ− µ)−1ϕλ(C) + (A(1, λ)− µI)−1[C − ϕλ(C)I− (λ− µ)−1ϕλ(C)(A− λI)].

Thus, we have constructed an inverse operator for the multiplication by (A − µI)
in J(0), and the resulting operator is obviously bounded. This proves the lemma.

Corollary 4.4. If λ is a nonisolated point of Spec A, then λ ∈ Spec A(1, λ), and
therefore λ ∈ Spec1 A.

Corollary 4.5. λ ∈ Spec1 A if and only if Spec A = Spec A(1, λ).

In particular, if λ ∈ Spec1 A, then Rat(A(1, λ)) = Rat(A).
We are going to find a natural R(A(1, λ))-cyclic vector in Ker ϕλ. Consider the

ideals I(k, λ) = {(A − λI)kB : B ∈ R(A)}, k = 1, 2, . . . , of the algebra R(A). By
Proposition 3.3, we have I(1, λ) ⊂ Kerϕλ, and this inclusion is obviously dense
(in the topology induced from J(0)). Therefore, the element (A− λI) is a natural
cyclic vector for the action of the algebra R(A(1, λ)) on Ker ϕλ.

Let R(A(1, λ)) be the closure of R(A(1, λ)) in the operator norm topology on
Kerϕλ. This norm is given by the following formula: if D ∈ R(A(1, λ)), then

‖D‖R(A(1,λ)) = sup
B∈R(A)

‖D · (A− λI)B‖J(0)

‖(A− λI)B‖J(0)
.

Let us imbed the algebra R(A(1, λ)) into the space Kerϕλ with the help of the
cyclic vector (A− λI). The imbedding operator τ(1, λ) is defined in a natural way:
τ(1, λ)B = B(A − λI). This is a continuous imbedding with dense range, and the
range contains the ideal I(1, λ).

Equip the lineal Im τ(1, λ) with the norm ‖·‖1,λ transferred by this imbedding: if
C ∈ Im τ(1, λ), then there exists a unique D ∈ R(A(1, λ)) such that C = D(A−λI),
and we set

‖C‖1,λ = ‖D‖R(A(1,λ)) = sup
B∈R(A)

‖D · (A− λI)B‖J(0)

‖(A− λI)B‖J(0)
= sup

B∈R(A)

‖CB‖J(0)

‖(A− λI)B‖J(0)

.
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Let J̃(1, λ) denote the Banach space Im τ(1, λ) equipped with the norm ‖ · ‖1,λ.

The space J̃(1, λ) can also be described as the completion of the ideal I(1, λ) with
respect to the norm ‖ · ‖1,λ.

The operator A(1, λ) can be restricted to J̃(1, λ), and by Corollary 2.2 we have

Spec{A(1, λ) : Ker ϕλ → Kerϕλ} = Spec{A(1, λ) : J̃(1, λ) → J̃(1, λ)}.

By Theorem 2.5, λ ∈ Spec A(1, λ) if and only if there exists ϕ1,λ ∈ J̃(1, λ)′ such
that ϕ1,λ 6= 0 and A(1, λ)′ϕ1,λ = λ · ϕ1,λ. The element ϕ1,λ is a natural candidate
for the first associate vector of the operator A(0)′ = (τ∇)′A(τ∇)′−1

, and hence
the vector (τ∇)′−1

ϕ1,λ is a natural candidate for the first associate vector of the
operator A.

Unfortunately, ϕ1,λ belongs to the space J̃(1, λ)′, which is an extension of the
space (Ker ϕλ)′ = J(0)′/{νϕλ : ν ∈ C}. This is natural, since the first associate
vector is defined modulo the related eigenvector, but nevertheless we prefer to place
it in an extension of the space J(0)′.

To this end we again apply the fact that the ideal Ker ϕλ is naturally com-
plemented in J(0) (Proposition 4.2): J(0) = Ker ϕλ ⊕ {νI : ν ∈ C}. Consider
the space J(1, λ) = J̃(1, λ) ⊕ {νI : ν ∈ C}. The space J̃(1, λ) is continuously
and densely imbedded in Kerϕλ. Therefore, the space J(1, λ) is continuously and
densely imbedded in the space Ker ϕλ ⊕ {νI : ν ∈ C} = J(0). This means that the
space J(0)′ = (Ker ϕλ)′ ⊕ {νϕλ : ν ∈ C} can be continuously and imbedded, with
weakly dense image, in the space J(1, λ)′ = J̃(1, λ)′ ⊕ {νϕλ : ν ∈ C}. Therefore,
the vector ϕ1,λ ∈ J̃(1, λ)′ can be regarded as an element of an extension of the space
J(0)′. Thus, for every λ ∈ Spec1 A we have found the related associate vector ϕ1,λ

of the operator A(0)′ in a suitable extension of the space J(0)′. We normalize it
by the conditions ϕ1,λ(I) = 0 and ϕ1,λ(A− λI) = 1. Since (A(1, λ)′ − λI)ϕ1,λ = 0,
it follows that ϕ1,λ((A(1, λ) − λI)2B) = 0 for any B ∈ R(A) (in other words,
ϕ1,λ|I(2,λ) = 0).

We can iterate this construction, successively extend our operators to broader
spaces, and thus find all possible root vectors in the corresponding spaces. These
spaces obviously form an inductive system, and therefore the inductive limit of
the obtained spaces will contain all possible root vectors of the operator A(0)′. All
operators from the algebra R(A) are naturally extendable to this inductive limit.

Let us describe the inductive step in more detail.
Assume that we have already obtained the norms ‖ · ‖p,λ defined on the ideals

I(p, λ) for p = 1, 2, ..., k. Let J̃(p, λ) denote the completion of the ideal I(p, λ) with
respect to the norm ‖ · ‖p,λ. Let A(p, λ) denote the restriction of the operator A(0)
to J̃(p, λ).

Definition 4.6. We say that λ ∈ Specp A if λ ∈ Spec A(p, λ).

By Corollaries 4.4 and 4.5, nonisolated points of Spec A belong to Specp A for
any p, and if λ ∈ Specp A, then Spec A(p, λ) = Spec A. In particular, if λ ∈ Specp A,
then Rat(A(p, λ)) = Rat(A).

Assume that we have already obtained the elements

ϕλ = ϕ0,λ, ϕ1,λ, ϕ2,λ, . . . , ϕk,λ, ϕp,λ ∈ J̃(p, λ)′,
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ϕp,λ((A− λI)p) = 1, ϕp,λ|I(p+1,λ) = 0, p = 1, 2, . . . , k.

The vectors (A − λI)p ∈ I(p, λ) are natural R(A(p, λ))-cyclic vectors. Let
B(Ker ϕp,λ) denote the Banach algebra of all bounded operators in the space
Kerϕp,λ (the space Ker ϕp,λ is assumed to be equipped with the norm ‖ · ‖p−1,λ).
Let R(A(p, λ)) denote the closure of the algebra R(A(p, λ)) in the Banach algebra
B(Ker ϕp,λ). As above, we obtain dense inclusions

τ(p, λ) : R(A(p, λ)) → Kerϕp−1,λ , τ(p, λ)(B) = B(A− λI)p.

Let A(k + 1, λ) denote the restriction of the operator A(k, λ) : J̃(k, λ) → J̃(k, λ)
to the subspace Ker ϕk,λ. The ideal I(k + 1, λ) is obviously dense in Ker ϕk,λ. Let
us construct a dense injection τ(k + 1, λ) with the help of the R(A(k + 1, λ))-cyclic
vector (A− λI)k+1 of the form

τ(k + 1, λ) : R(A(k, λ)) → Kerϕk,λ , τ(k + 1, λ)(B) = B(A− λI)k+1.

Transfer the norm from the algebra R(A(k +1, λ)) to the lineal Im τ(k +1, λ) with
the help of the mapping τ(k +1, λ). Let ‖ · ‖k+1,λ denote the transferred norm and,
let J̃(k + 1, λ) denote the resulting Banach space.

On restricting the operator A(k + 1, λ) to J̃(k + 1, λ), we obtain the operator
A(k + 1, λ) : J̃(k + 1, λ) → J̃(k + 1, λ). By Corollary 2.2, we have

Spec{A(k+1, λ) : J̃(k+1, λ) → J̃(k+1, λ)} = Spec{A(k+1, λ) : Kerϕk,λ → Ker ϕk,λ},
and if λ ∈ Speck+1 A, then λ ∈ Spec A(k + 1, λ); moreover, we can find a vector
ϕk+1,λ ∈ J̃(k + 1, λ)′ such that ϕk+1,λ((A − λI)k+1) = 1 and ϕk+1,λ|I(k+2,λ) = 0.
Now the inductive step is completely described.

The ideals I(k, λ) are naturally complemented in R(A), and the related decom-
positions are given by the following formulas, where the first term in the right-hand
side obviously belongs to I(k, λ) :

f(A) =
(
f(A)−

k−1∑

i=0

(i!)−1f (i)(λ)(A− λI)i
)

+
( k−1∑

i=0

(i!)−1f (i)(λ)(A− λI)i
)
.

Introduce the k-dimensional subspaces

T (k, λ) =
{ k−1∑

i=0

ci(A− λI)i : ci ∈ C
}

.

Then we have R(A) = I(k, λ) ⊕ T (k, λ). Consider the spaces J(k, λ) = J̃(k, λ) ⊕
T (k, λ). Then J(k, λ)′ = J̃(k, λ)′ ⊕ T (k, λ)′. Since ϕk,λ ∈ J̃(k, λ)′, we have
ϕk,λ|T (k,λ) = 0, and regarding the vectors ϕk,λ as elements of J(k, λ)′ (and there-
fore as elements of an extension of J(0)′) we see that ϕk,λ((A − λI)p) = δ(k − p).
This is equivalent to the relation (A(0)′ − λI)pϕk,λ = ϕk−p,λ, where we certainly
assume that ϕp,λ = 0 for p ≤ −1.

Obviously, J(0) ⊃ J(1, λ) ⊃ J(2, λ) ⊃ · · · , and all inclusions are dense and
continuous. Consider the intersection

J∞(A) =
⋂

k≥0, λ∈Speck A

J(k, λ).

It contains R(A) and can be equipped with the natural locally convex topology
of the projective limit. We can find all possible root vectors in the dual space of
J∞(A), which we denote by J∞(A).

We conclude this section with the following assertion.
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Proposition 4.7. Let B and C belong to the algebra J∞(A). Then

ϕk,λ(BC) =
∑

s1+s2=k

ϕs1,λ(B)ϕs2,λ(C).

Proof. Since B,C ∈ J∞(A), we have B, C ∈ J(k + 1, λ). Let B = Bk + bk and
C = Ck + ck be the standard decompositions, where Bk, Ck ∈ J̃(k + 1, λ) and
bk, ck ∈ T (k + 1, λ). Then

bk =
∑

0≤s≤k

βs(A− λI)s, ck =
∑

0≤s≤k

γs(A− λI)s.

Let us take into account the fact that ϕs,λ((A − λI)t) = δ(s − t). Then for any
s between 0 and k + 1 we obtain

ϕs,λ(B) = ϕs,λ(Bk + bk) = ϕs,λ(Bk) + ϕs,λ(bk) = 0 +
∑

0≤t≤k

βtϕs,λ((A− λI)t) = βs.

Similarly, ϕs,λ(C) = γs. Therefore,

ϕk,λ(BC) = ϕk,λ

( ∑

s1+s2≤k

ϕs1,λ(B) ϕs2,λ(C)(A− λI)s1+s2 + (an element of J̃(k + 1, λ))
)

=
∑

s1+s2=k

ϕs1,λ(B) ϕs2,λ(C).

In the next part of the paper (Sections 5–7) we describe the entire construction in
analytic terms, which permits us to continue the study of the Jordan decomposition.
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