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Abstract. This part of the paper is devoted to an analytic description of the main
construction arising in Jordan decompositions, and to the completeness problems for
the root vectors.

For an arbitrary bounded linear operator A, in a Banach space V , that satisfies
the Double Cyclicity Condition (see Part 1) we construct a broader locally convex
space V− such that

(i) the initial Banach space V is densely and continuously embedded in V−,
(ii) the operator and all possible rational functions of the operator are continuously

extendable to V−, and
(iii) all possible root vectors of A belong to V−.
We discuss algebraic properties equivalent to the completeness of the system of

generalized root vectors and obtain the corresponding Jordan decomposition.

Introduction

In the first part of this paper [12], we constructed a natural extension V− of the
initial space V that contains the initial space V as a dense lineal. The operator A
and all possible rational functions of A are extended to the larger space by continu-
ity. In this part of the paper we present an analytic approach to our constructions
that makes possible a more precise study of the completeness problems for the gen-
eralized root vectors (all these vectors belong to the space V−). Now we can pose
the question of whether these root vectors form a complete system. We show that
the answer to this question is equivalent to the “generalized semisimplicity” of a
special algebra, in which case we say that the algebra is “semi-intricate.” For the
case in which the root vectors form a complete system (this means that the related
algebra is semi-intricate), we obtain an exact analog of the Jordan decomposition
formula that involves integration with respect to a “generalized measure.”

The entire paper is organized as follows. Section 1 contains necessary prelimi-
naries. In Sections 2 and 3 we describe the first step in the main construction and
present a theory of expansion of vectors into “integrals” over generalized eigenvec-
tors with respect to a generalized measure. All results of these sections are actually
well known, we only present them in a way suitable for further considerations. Sec-
tion 4 is devoted to a geometric description of the space containing all possible root
vectors. These sections form the first part of the paper, and its results, notions, and

Typeset by AMS-TEX

1
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notation are extensively used in the present part, which continues our investiga-
tions. In Section 5 we study the above construction in analytic terms and introduce
some notions needed in the generalized Gelfand transform. Section 6 is devoted to
the generalized Gelfand transform and completeness problems for generalized root
vectors. In Section 7 we apply the previous considerations to obtain the Jordan
decomposition for a general operator satisfying the DCC condition (see Part I of
the paper).

Preliminary versions of these results were presented at various conferences since
1983 including Chernogolovka (1983), Voronezh (1985, 1991), Halle (1988), Nov-
gorod (1989), Oberwolfach (1990), Sapporo (1990), Jerusalem (1991), and Beer-
Sheva (1992). A draft of this paper [11] has circulated since 1993 as a preprint of
the Max-Planck-Institute (Bonn).

Acknowledgments. I am greatly indebted to S.G. Krein and G.L. Litvinov for
interesting and helpful discussions. I am very thankful to Veronica Zobin for help
and support.

5. The Algebra J∞(A)

Consider the algebra R(A) and, for each λ ∈ C \ Spec A, introduce the following
seminorms on R(A):

‖f(A)‖0,λ = ‖f(A)‖,

‖f(A)‖1,λ = sup
B∈R(A)

‖(f(A)− f(λ)I)B‖0,λ

‖(A− λI)B‖0,λ
,

‖f(A)‖k,λ = sup
B∈R(A)

‖[f(A)−∑k−1
i=0 f (i)(λ)(i!)−1(A− λI)i]B‖k−1,λ

‖(A− λI)kB‖k−1,λ
.

The seminorm ‖ · ‖k,λ vanishes on the k-dimensional subspace T (k, λ) and coin-
cides with the previously considered norm when restricted to the ideal I(k, λ), that
is, for f(A) ∈ I(k, λ) we have

‖f(A)‖k,λ = sup
B

‖f(A)B‖k−1,λ

‖(A− λI)kB‖k−1,λ
.

Definition 5.1. Denote by J∞(A) the completion of R(A) with respect to the
family of seminorms {‖ · ‖k,λ}.

This definition obviously coincides with that in Section 4.

Proposition 5.2. λ ∈ Speck A if and only if ‖f(A)‖k,λ ≥ |f (k)(λ)|/(k!) for any
f ∈ Rat(A).

Proof.

λ ∈ Speck A ⇐⇒ λ ∈ Spec A(k, λ)

⇐⇒ ∀g ∈ Rat A(k, λ) = Rat(A) ‖g(A(k, λ)) : J̃(k, λ) → J̃(k, λ)‖ ≥ |g(λ)|

⇐⇒ ∀g ∈ Rat(A) sup
B

‖g(A)(A− λI)kB‖k−1,λ

‖(A− λI)kB‖k−1,λ
≥ |g(λ)|

⇐⇒ ∀f(A) ∈ I(k, λ) ‖f(A)‖k,λ ≥ |f (k)(λ)|
k!

⇐⇒ ∀f ∈ Rat(A) ‖f(A)‖k,λ ≥ |f (k)(λ)|
k!

. ¤
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Proposition 5.3. µ ∈ Spec A(k, λ) if and only if

‖f(A)‖k,λ ≥





∣∣∣f(µ)−∑k−1
i=0 f (i)(λ)(µ− λ)i(i!)−1

(µ− λ)k

∣∣∣, µ 6= λ

∣∣∣f
(k)(λ)
k!

∣∣∣, µ = λ,

for any f ∈ Rat(A).

Proof. Let µ 6= λ (otherwise see the previous proposition).

µ ∈ Spec A(k, λ)

⇐⇒ ∀g ∈ Rat A(k, λ) = Rat(A) ‖g(A(k, λ)) : J(k, λ) → J(k, λ)‖ ≥ |g(µ)|

⇐⇒ ∀g ∈ Rat(A) sup
B

‖g(A)(A− λI)kB‖k−1,λ

‖(A− λI)kB‖k−1,λ
≥ |g(µ)|

⇐⇒ ∀f ∈ I(k, λ) sup
B

‖f(A)B‖k−1,λ

‖(A− λI)kB‖k−1,λ
= ‖f(A)‖k,λ ≥

∣∣∣ f(µ)
(µ− λ)k

∣∣∣

⇐⇒ ∀f ∈ Rat(A) ‖f(A)‖k,λ ≥
∣∣∣f(µ)−∑k−1

i=0 f (i)(λ)(µ− λ)i(i!)−1

(µ− λ)k

∣∣∣. ¤

Lemma 5.4. If B ∈ I(k, λ) and C ∈ R(A), then ‖BC‖k,λ ≤ ‖B‖k,λ‖(A −
λI)kC‖k,λ.

Proof.

‖BC‖k,λ = sup
D

‖BCD‖k−1,λ

‖(A− λI)kCD‖k−1,λ
·sup

D

‖(A− λI)kCD‖k−1,λ

‖(A− λI)kD‖k−1,λ
≤ ‖B‖k,λ‖(A−λI)kC‖k,λ. ¤

Actually, many seminorms of the form ‖ · ‖k,λ are equivalent.

Proposition 5.5. For λ 6∈ Speck A, the norms ‖ · ‖k,λ and ‖ · ‖k−1,λ are equivalent
on I(k, λ).

Proof. Let f(A) ∈ I(k, λ). Without any conditions on λ we have

‖f(A)‖k,λ = sup
B

‖f(A)B‖k−1,λ

‖(A− λI)kB‖k−1,λ
≥ 1
‖(A− λI)k‖k−1,λ

‖f(A)‖k−1,λ.

Hence, the norm ‖ · ‖k,λ is always stronger than the norm ‖ · ‖k−1,λ on I(k, λ).
Assume that λ 6∈ Speck A. Then λ 6∈ Spec A(k, λ), i.e.,

‖(A(k, λ)− λI)C‖k−1,λ ≥ c‖C‖k−1,λ

for C ∈ I(k − 1, λ), or

‖(A− λI)(A− λI)k−1D‖k−1,λ ≥ c‖(A− λI)k−1D‖k−1,λ

for all D ∈ R(A). Therefore, by Lemma 5.4 we obtain the estimate

‖f(A)‖k,λ = sup
D

‖f(A)D‖k−1,λ

‖(A− λI)kD‖k−1,λ
≤ 1

c
sup
D

‖f(A)D‖k−1,λ

‖(A− λI)k−1D‖k−1,λ

≤ 1
c
sup
D

‖f(A)‖k−1,λ‖(A− λI)k−1D‖k−1,λ

‖(A− λI)k−1D‖k−1,λ
=

1
c
‖f(A)‖k−1,λ. ¤

Thus we need only the seminorms ‖ · ‖k,λ with λ ∈ Speck A, because the other
seminorms do not influence in the topology.
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The Space j∞{Mk}.
Consider a decreasing sequence {Mk}∞k=0 of compact subsets of C, M0 ⊃ M1 ⊃

M2 ⊃ . . . , such that

Mk \ (
∞⋂

i=0

Mi) ⊂ IsolMk,

where Isol Mk stands for the set of isolated points of Mk.

Definition 5.6. Let j∞{Mk} be the following locally convex space formed by
sequences of functions:

j∞{Mk} = {(fk)∞k=0| fk : Mk → C,

∀λ ∈ Mk, sup
µ∈M0\{λ}

|f0(µ)−∑k−1
i=0 fi(λ)(µ− λ)i(i!)−1|
|µ− λ|k < ∞}.

The above suprema define a fundamental family of seminorms on j∞{Mk}.
The space j∞{Mk} somewhat resembles the well-known space of Whitney jets

(for the case in which all sets Mk coincide) but in fact is much larger. The principal
difference is that the relation in the above suprema is not uniform with respect to
λ. Nevertheless, the elements of j∞{Mk} can be regarded, to some extent, as
successive derivatives of the same function (see properties (ii) and (iii) below). In
all cases, the restrictions of successive derivatives of a function to the related sets
Mk provide important examples of elements of j∞{Mk}.

Let us list several simple properties of this space.

(i) f0 is continuous on M0.

One must verify the continuity at the nonisolated points of M0 only, but all such
points belong to

⋂∞
k=0 Mk, and hence for every λ ∈ M0 \ Isol M0 (⊂ M1) and for

every µ ∈ M0 we obtain

|f0(µ)− f0(λ)| ≤ C(λ)|µ− λ|,
which proves assertion (i).

(ii) For any chosen λ ∈ ⋂∞
p=0 Mp, the function (of µ) given by

f0(µ)−∑k−1
i=0 fi(λ)(µ− λ)i(i!)−1

(µ− λ)k

is continuous on M0, and its limit as µ → λ is fk(λ)/(k!). Therefore, the functions

fk|T∞
p=0 Mp

, k ≥ 1,

are completely determined by the function f0|M0\Isol M0 .

We must prove the continuity at λ only (see (i)). Note that

∞ > sup
µ∈M0

µ6=λ

∣∣∣f0(µ)−∑k
i=0 fi(λ)(µ− λ)i(i!)−1

(µ− λ)k+1

∣∣∣

= sup
µ∈M0

µ6=λ

∣∣∣ 1
µ− λ

(f0(µ)−∑k−1
i=0 fi(λ)(µ− λ)i(i!)−1

(µ− λ)k
− fk(λ)

k!

)∣∣∣.
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Hence, as µ → λ, the limit of

f0(µ)−∑k−1
i=0 fi(λ)(µ− λ)i(i!)−1

(µ− λ)k
− fk(λ)

k!

is zero.

(iii) f0 is analytic on
o

M0 (the interior of M0), and fi(λ) = f
(i)
0 (λ) for every

λ ∈
o

M0 and for all i = 0, 1, . . . .

The proof readily follows from (i) and (ii).

(iv) The definition of the space j∞{Mk} imposes no conditions on the functions
fk|Isol Mk

(k = 0, 1, . . . ).

Definition 5.7. Let Lim M denote the set ∂(M \ IsolM).

Definition 5.8. Consider the following algebra:

A0 = {f : Lim M0 → C |f0|Lim M0 = f for some (fk)∞k=0 ∈ j∞{Mk}}.

Define a fundamental system of seminorms on A0 as follows:
for k ≥ 0 and λ ∈ M0 \ IsolM0,

|f |k,λ = sup{ |f(µ)−∑k−1
i=0 fi(λ)(µ− λ)i(i!)−1|
|µ− λ|k : µ ∈ Lim M0, µ 6= λ}.

Certainly, the element (fk)∞k=0 ∈ j∞{Mk} is not unique for a given f ∈ A0.
However, by (ii) and (iii), any choice of this element does not influence in the above
seminorms.

Taking account of (i) and (iii), we see that A0 is a locally convex subalgebra
of the algebra CH(M0 \ IsolM0) of all functions continuous on M0 \ IsolM0 and
holomorphic inside M0 (this is a Banach algebra equipped with the natural norm
sup{|f(x)| : x ∈ Lim M0}). Any bounded linear functional on CH(M0 \ IsolM0)
can be represented by a Borel measure on Lim M0. The algebra A0 contains all
polynomials, and hence it is dense in the algebra CH(M0 \ IsolM0). The embedding
of A0 in CH(M0\IsolM0) is obviously continuous. Therefore, the space of bounded
linear functionals on CH(M0 \ IsolM0) is weakly dense in the space of continuous
functionals on A0, and we can regard the functionals on A0 as generalized measures
on LimM0.

(v) The space j∞{Mk} is naturally isomorphic to A0 × (
∏∞

k=0 C| Isol Mk|).

This isomorphism can be described as follows: for any (fk)∞k=0 in j∞{Mk}, the
restriction f0|Lim M0 belongs to A0 and (fk|Isol Mk

)∞k=0 belongs to
∏∞

k=0 C| Isol Mk|.

(vi) The dual space (j∞{Mk})′ = j∞{Mk} is naturally isomorphic to

(A0)′ ⊕ (
∞∑

k=0

C| Isol Mk|),
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i.e., for every continuous linear functional ϕ : j∞{Mk} → C, there exist dµ ∈ (A0)′

(a “generalized measure on Lim M0”) and complex numbers c(k, λ), k ≥ 0, λ ∈
IsolMk, such that

ϕ(fk) =
∫

Lim M0

f0(λ) dµ(λ) +
∑

k=0,1,...

λ∈Isol Mk

fk(λ) c(k, λ)

(and only finitely many numbers c(k, λ) are nonzero).

6. Generalized Gelfand Transform and Completeness

Consider the space j∞(A) = j∞{Speck A} and introduce the mapping

R(A) 3 f(A) 7→ (f (k)|Speck A)∞k=0 ∈ j∞(A).

Proposition 5.3 shows that this mapping is continuous, and therefore it can be
extended by continuity to the following mapping, the so-called generalized Gelfand
transform:

∧ : J∞(A) → j∞(A).

This transform can be also described as follows:

(B̂)k(λ) = ϕk,λ(B) for k = 0, 1, . . . , λ ∈ Speck A.

Definition 6.1. The kernel Ker∧ is called the small radical of J∞(A). The oper-
ator A and the algebra J∞(A) are said to be semi-intricate if the small radical of
J∞(A) is trivial.

The small radical can be described as follows:

Ker∧ ={B : V → V | there exists a net {gβ} ⊂ Rat(A) such that

∀k ≥ 0, ∀λ ∈ Speck A, ‖gβ(A)−B‖k,λ → 0, g
(k)
β (λ) → 0}.

Theorem 6.2. The system of generalized root vectors

{ϕk,λ : k = 0, 1, . . . , λ ∈ Speck A}
is σ(J∞(A), J∞(A))-complete if and only if the operator A is semi-intricate.

This condition means that, for any net {gβ} ⊂ Rat(A) such that the net {gβ(A)}
is fundamental in every seminorm ‖ · ‖k,λ and g

(k)
β (λ) → 0 (k = 0, 1, . . . , λ ∈

Speck A), we have lim
β

gβ(A) = 0.

The proof is obvious.

A Refinement of the Completeness.
It was explained in Section 5 (see Definition 5.8 and Assertion (v)) that any

element (fk)∞0 ∈ j∞(A) is completely determined by the functions f0|Lim Spec A and
fk|Isol Speck A, k ≥ 0. Thus, we can consider the following version of the generalized
Gelfand transform:

∧ : J∞(A) −→ A0 × (
∞∏

k=0

C| Isol Speck A|) :

(B̂)k(λ) = ϕk,λ(B) for k = 0, λ ∈ LimSpecA and for k ≥ 0, λ ∈ Isol Speck A

(we denote both transforms by the same symbol ∧ if this leads to no confusion).
Both versions of the generalized Gelfand transform are injective or noninjective

simultaneously. This observation proves the following assertion.
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Theorem 6.3. The system of generalized root vectors {ϕk,λ : k = 0, 1, . . . , λ ∈
Speck A} is σ(J∞(A), J∞(A))-complete if and only if the subsystem

{ϕ0,λ : λ ∈ LimSpec A; ϕk,λ : k ≥ 0, λ ∈ Isol Speck A}
is σ(J∞(A), J∞(A))-complete.

7. Jordan decomposition

Jordan Decomposition in J∞(A).
Suppose that the system

{ϕ0,λ : λ ∈ LimSpec A; ϕk,λ : k ≥ 0, λ ∈ Isol Speck A}
is σ(J∞(A), J∞(A))-complete, i.e., the generalized Gelfand transform is injective.
Then the dual mapping ∧′ sends j∞(A) onto a σ(J∞(A), J∞(A))-dense subspace
of J∞(A).

Therefore, for any Φ ∈ J∞(A), there exists a net {ψβ} ⊂ j∞(A) such that

∧′ψβ
σ(J∞,J∞)−→ Φ.

Every functional ψβ is defined by the generalized measure dµβ ∈ (A0)′ and by a
set of numbers cβ(k, λ), k ≥ 0, λ ∈ Isol Speck A (where only finitely many numbers
are nonzero),

ψβ((fk)∞k=0) =
∫

Lim Spec A

f0(λ) dµβ(λ) +
∑

k≥0

λ∈Isol Speck A

fk(λ)cβ(k, λ).

Thus, we obtain the following formula:

Φ(B) = lim
β

(∧′ψβ)(B) = lim
β

ψβ(B̂)

= lim
β

( ∫

Lim Spec A

ϕ0,λ(B) dµβ(λ) +
∑

k≥0,

λ∈Isol Speck A

ϕk,λ(B)cβ(k, λ)
)
.

This formula can be rewritten as the following Jordan decomposition in J∞(A):
for every Φ ∈ J∞(A), there exists a net of generalized measures {dµβ}β ⊂ (A0)′

and a net of sequences {cβ(k, λ), k ≥ 0, λ ∈ Isol Speck A}β (for any β, the related
sequence contains only finitely many nonzero elements) such that

Φ = lim
β

( ∫

Lim Spec A

ϕ0,λ dµβ(λ) +
∑

k≥0,

λ∈Isol Speck A

ϕk,λ cβ(k, λ)
)
.

Certainly, it is desirable to get rid of the limit in the above formula and obtain
an assertion of the following type:

for every Φ ∈ J∞(A), there exist a “generalized measure dµΦ on LimSpec A”
and complex numbers cΦ(k, λ), k ≥ 0, λ ∈ Isol Speck A, such that

Φ =
∫

Lim Spec A

ϕ0,λ dµΦ(λ) +
∑

k≥0,

λ∈Isol Speck A

ϕk,λ cΦ(k, λ).
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Unfortunately, we cannot even guarantee that the separate limits exist. In other
words, the subalgebra Im∧ can be nondecomposable into the direct product of its
projections to A0 and

∏∞
k=0 C| Isol Speck A|.

As a partial result, one can prove that the limits limβ cβ(k, λ) exist for all possible
k and λ. To prove this fact, we take any k ≥ 0 and λ ∈ Isol Speck A and choose a
function f analytic in a neighborhood of SpecA such that

(i) f vanishes outside of a small disk centered at λ that contains no other point
of Spec A, and

(ii) f(µ) = (µ− λ)k/k! in a smaller disk centered at λ.
In this case, the operator f(A) is well defined, and one can readily show that

f(A) ∈ J∞(A). We obtain

ϕp,µ(f(A)) = 0 for all µ 6= λ and all p

ϕp,λ(f(A)) = 0 for all p 6= k, ϕk,λ(f(A)) = 1.

Thus, Φ(f(A)) = limβ cβ(k, λ), and hence the limit on the right-hand side exists
for any k and λ.

Jordan Decomposition in the Initial Spaces.
Here we mainly repeat the considerations of Section 3 to obtain Jordan decom-

positions in the initial spaces.
We return to the spaces V and V ′ and to the inclusions τ∆ and τ∇,

R(A) τ∆−→ V, V ′ τ∇←− R(A).

We can readily see that the mappings τ∆ and τ∇ are continuous if R(A) is equipped
with the system of seminorms ‖ · ‖n,λ and the spaces V and V ′ are equipped with
the weak topologies. Thus, we again obtain a rigging

J∞(A) τ∆−→ V
(τ∇)′−→ J∞(A), J∞(A)

(τ∆)′←− V ′ τ∇←− J∞(A).

Let V+ (V+) denote the range of τ∆ (of τ∇) equipped with the topology trans-
ferred from J∞(A) by τ∆ (by τ∇). We obtain dense inclusions

V+ ⊂ V, V ′ ⊃ V+.

Let V− (V−) denote the space of continuous linear functionals on the space V+

(V+). The dualities between V+ and V− and between V− and V+ are extensions of
the initial duality between V and V ′.

We obtain the following dense inclusions:

V+ ⊂ V ⊂ V−, V− ⊃ V ′ ⊃ V+.

The mapping τ∆ (τ∇) is an isomorphism between J∞(A) and V+ (V+). The
mapping (τ∇)′ ((τ∆)′) is an isomorphism between J∞(A) and V− (V−).

Set ek,λ = (τ∇)′−1(ϕk,λ) and ek,λ = (τ∆)′−1(ϕk,λ). For every C ∈ J∞(A) we
have

〈ek,λ, C ′∇〉 = 〈(τ∇)′
−1

(ϕk,λ), τ∇C〉 = ϕk,λ(C).

Similarly, 〈C∆, ek,λ〉 = ϕk,λ(C).
Let us find a version of the Jordan decomposition for vectors in V . This is

impossible for all vectors in V , but this turns out to be possible for vectors in a
dense lineal V+ in V .

Since the formulas below are very lengthy, we write LSA instead of LimSpec A
and ISkA instead of Isol Speck A and omit some subscripts at dµ and c.
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Theorem 7.1. Let the operator A be semi-intricate. There exist a net of general-
ized measures {dµβ;∆,∇}β on LimSpec A (the set of continuous linear functionals
on the algebra A0) and a net of sequences of complex numbers {cβ;∆,∇(k, λ), k ≥
0, λ ∈ Isol Speck A}β (for any β, only finitely many numbers cβ;∆,∇(k, λ), k ≥
0, λ ∈ Isol Speck A, can be nonzero) such that, for every x ∈ V+ and y ∈ V+, the
following Jordan decomposition holds:

〈x, y〉 = lim
β

( ∫

LSA

〈x, eλ〉〈eλ, y〉 dµβ(λ) +
∑

k=0,1,...

λ∈ISkA
l1+l2=k

〈x, el1,λ〉〈el2,λ, y〉cβ(k, λ)
)
.

Similarly, for any f ∈ Rat(A), x ∈ V+, and y ∈ V+ we have

〈f(A)x, y〉 = lim
β

( ∫

LSA

f(λ)〈x, eλ〉〈eλ, y〉 dµβ(λ) +
∑

k=0,1,...

λ∈ISkA
l1+l2+l=k

f (l)(λ)
l!

〈x, el1,λ〉〈el2,λ, y〉cβ(k, λ)
)
.

Proof. Consider the linear functional Φ∆,∇ : B 7→ 〈B∆,∇〉 on J∞(A).
It is obvious that Φ∆,∇ ∈ J∞(A), and therefore it is σ(J∞(A), J∞(A))-approximable

by ∧′-images of a net {dµβ , cβ(k, λ)}β of functionals on j∞(A),

∧′ (dµβ , cβ(k, λ))
σ(V−,V+)−→ Φ∆,∇.

Take any x ∈ V+ and y ∈ V+. Then there are B,C ∈ J∞(A) such that x = B∆,
y = C ′∇, and

〈x, y〉 = 〈B∆, C ′∇〉 = 〈(CB)∆,∇〉 = ϕ∆,∇(CB) = lim
β

[∧′(dµβ , cβ(k, λ)](CB)

= lim
β

( ∫

LSA

ϕλ(CB) dµβ(λ) +
∑

k=0,1,...

λ∈ISkA

ϕk,λ(CB)cβ(k, λ)
)

= lim
β

( ∫

LSA

ϕλ(C)ϕλ(B) dµβ(λ) +
∑

k=0,1,...

λ∈ISkA
l1+l2=k

ϕl2,λ(C)ϕl1,λ(B)cβ(k, λ)
)

= lim
β

( ∫

LSA

〈B∆, eλ〉〈eλ, C ′∇〉 dµβ(λ) +
∑

k=0,1,...

λ∈ISkA
l1+l2=k

〈el2,λ, C ′∇〉〈B∆, el1,λ〉cβ(k, λ)
)

= lim
β

( ∫

LSA

〈x, eλ〉〈eλ, y〉 dµβ(λ) +
∑

k=0,1,...

λ∈ISkA
l1+l2=k

〈x, el1,λ〉〈el2,λ, y〉cβ(k, λ)
)

The second assertion can be proved in a similar way. ¤
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