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Abstract. We consider some results related to the problem of quasi-equivalence
of absolute bases in a Fréchet space. We show that under some conditions on the
matrices, transforming one basis into another, these bases are quasi-equivalent.

Introduction

Let E be a Fréchet space, let {] · [p, p = 1, 2, . . . } be a fundamental system of
seminorms in E.

Let (ei)∞1 be an absolute basis in E. This means that there exists the system
(ei)∞1 of functionals on E, biorthogonal to the basis (ei)∞1 , and for any x ∈ E

x =
∞∑

i=1

ei(x)ei

and, moreover, the series
∞∑

i=1

|ei(x)| ]ei[p

are convergent for any p ≥ 1. One can easily show (using the Open Mapping
Theorem), that this condition exactly means that the system of seminorms

‖x‖p =
∞∑

i=1

|ei(x)| ]ei[p, p = 1, 2, ...

is equivalent to the initial system of seminorms {] · [p, p = 1, 2, ...} on E.
In other words, the decomposition of elements of E with respect to the absolute

basis (ei)∞1 defines an isomorphism of the space E onto the Köthe sequence
space

K(λip) = {x = (xi)∞1 : ‖x‖p =
∞∑

i=1

|xi|λip < ∞}

where λip = ]ei[p.
Let us try to obtain other absolute bases from this one. There are three obvious

ways to do this:
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1. Scaling of elements of the basis, i.e., considering a new system (γiei)∞1 , where
γi 6= 0. What you get is obviously an absolute basis.

2. Renumerating the elements of the basis, i.e., considering a system (eσ(i))∞1 ,
where σ : N→ N is a permutation (bijective self-mapping) of the set N of naturals.
What you get is obviously an absolute basis.

3. Applying an automorphism T : E → E to elements of the basis, i.e.,
considering a new system (Tei)∞1 . This is also an absolute basis.

It is worth noting that, opposite to the finite dimensional situation, there are
plenty of operations of types 1 and 2 that are not operations of type 3.

Two absolute bases are called quasi-equivalent if one can be transformed to
another by a finite number of operations 1 - 3. Because of obvious commutation
relations between these operations, we can actually limit ourselves to one operation
of each type.

The notion of quasi-equivalence was introduced by M.M. Dragilev [3], and he
discovered the first deep result in this area:

Theorem (Dragilev). Any two bases of the space A(D) of functions holomor-
phic in the unit disc (endowed with the natural topology of uniform convergence on
compact subsets) are quasi-equivalent.

Actually, he first showed that every basis in this space is absolute, and then
established a remarkable property of this space: it has essentially one basis - up
to quasi-equivalence. These important and unexpected results attracted a lot of
attention. Soon A.S. Dynin and B.S. Mityagin [5] showed that the absoluteness
of every basis is in fact true for any nuclear Fréchet space (A(D) is an example
of a nuclear space). Then B.S. Mityagin [13] generalized and extended Dragilev’s
results and methods to more general spaces and, in particular, he has formulated
the following

Quasi-equivalence Conjecture:.
Any two bases in a nuclear Fréchet space are quasi-equivalent.

This conjecture (or, better to say, the related problem) was discussed and re-
peated in several monographs and surveys, see, e.g., [1, 5, 6, 11-14, 16, 17].

There was a lot of activity in this area, especially in the 60s and 70s. Let us
mention a deep paper by B.S. Mityagin [14], where he proved the conjecture for a
special class of spaces - centers of Hilbert scales. This result was very nontrivial by
itself, but, even more importantly, in this paper he introduced a wealth of new ideas
into this problem, and, in particular, he discovered that the problem is essentially
of a combinatorial nature.

Soon there came a breakthrough - L. Crone and W. Robinson [1] and, inde-
pendently, V.P. Kondakov [10] proved that the quasi-equivalence conjecture is true
for the so called regular spaces (introduced by M.M. Dragilev [4,5]). Very soon P.
Djakov [2] found a very simple geometric proof of this result (in this article we give
another simple proof of this result). There was a common belief at that time that
the conjecture will be proven very soon. To everybody’s great surprise, it is still an
open question.

I was working on this problem in the 70s, and then returned to it several times
in the 80s and 90s, trying to construct counterexamples, based on an approach
I proposed in 1974. This approach was described in my Ph. D. thesis (1975),
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but was never published. In this article I describe the approach and the related
results hoping that they may be useful in future attempts to prove (or disprove)
the Quasi-equivalence Conjecture.

Acknowledgments. I am very thankful to P. Kuchment and B. Mityagin for
numerous valuable discussions of the problem.

1. Absolute bases in a Fréchet space

Let (ei)∞1 , (fi)∞1 be two absolute bases in a Fréchet space E. Then we have the
following decompositions:

fi =
∑

j

αj
i ej , ei =

∑

j

βj
i fj , i = 1, 2, ...

This simply means that αj
i = ej(fi), βj

i = f j(ei). As it was explained above, the
bases generate two systems of seminorms on E

‖x‖p =
∞∑

i=1

|ei(x)| ]ei[p=
∑

i

|ei(x)|λip, p = 1, 2, ...

|x|p =
∞∑

i=1

|f i(x)| ]fi[p=
∑

i

|f i(x)|µip, p = 1, 2, ...

each of these systems is equivalent to the initial system {] · [p, p = 1, 2, ...}.
One can assume that ] · [p≤ 1

2 ] · [p+1, then

| · |p ≤ 1
2
| · |p+1 and ‖ · ‖p ≤ 1

2
‖ · ‖p+1

This condition and the above mentioned equivalence imply that

(1) ∀p ∃p′ ∀x ∈ E |x|p ≤ 1
2
‖x‖p′ ≤ ‖x‖p′ , ‖x‖p ≤ 1

2
|x|p′ ≤ |x|p′

Hence,

‖ei‖(p′)′ ≥
∑

j

|βj
i | |fj |p′ ≥

∑

j

|βj
i |

∑

k

|αk
j | ‖ek‖p =

∑

k

‖ek‖p

∑

j

|βj
i αk

j |

(we may change the order of summation since all terms are nonnegative.)
Therefore ∑

j

|βj
i α

k
j | < ∞

and one can easily verify that the matrices A = (αj
i ) and B = (βj

i ) are mutually
inverse, and one can multiply them according to the usual rules – the related series
are absolutely convergent.

Let us recall several simple facts about boundedness properties of operators
generated by matrices. Every matrix Γ = (γj

i ) generates a linear operator in the
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space of sequences, defined at least on the (usually dense) lineal of finitely supported
sequences, we will denote this operator by the same letter Γ :

(Γ(xi))j =
∑

i

γj
i xi

Note that this implies the usual agreement

(ΓΘ)j
i =

∑
q

γj
qθq

i

(summation over the lower indices of the first factor and the upper indices of the
second factor).

We are interested in the following sequence spaces: l1 and l∞. Since one can
easily find the extreme points of their unit balls, and since they are in a natural
duality, it is very easy to compute the norms of the related operators:

(2) ‖Γ‖l1→l1 = sup
i

∑

j

|γj
i |

(3) ‖Γ‖l∞→l∞ = sup
j

∑

i

|γj
i |

(4) ‖Γ‖l1→l∞ = sup
i,j
|γj

i |

For any matrix Γ = (γj
i ) put Γ+ = (|γj

i |).
It immediately follows from the above formulas, that

(5) ‖Γ‖l1→l1 = ‖Γ+‖l1→l1 , ‖Γ‖l∞→l∞ = ‖Γ+‖l∞→l∞ , ‖Γ‖l1→l∞ = ‖Γ+‖l1→l∞

As usually, δj
i will denote the entries of the identity matrix:

δj
i =

{
0, if i 6= j

1, if i = j

The following simple result will be useful in our considerations:

Lemma 1. Let A = (αj
i ), B = (βj

i ) be two matrices. A diagonal matrix M =
(δj

i µi) such that ‖MA‖l1→l1 ≤ α and ‖BM−1‖l1→l1 ≤ β exists if and only if
‖B+A+‖l1→l1 ≤ αβ.

Proof.
The ”only if” part is obvious. Let us prove the ”if” part. Assuming that

‖B+A+‖l1→l1 < ∞, we see that

∀i
∑

k

|αk
i |

∑

j

|βj
k| =

∑

k

∑

j

|βj
kαk

i | =
∑

j

∑

k

|βj
kαk

i | < ∞
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therefore
∀k

∑

j

|βj
k| < ∞.

We choose µi = β−1(
∑

j |βj
i |). Then

‖BM−1‖l1→l1 = sup
i

∑

j

|µ−1
i βj

i | = β

and
‖MA‖l1→l1 = sup

i

∑

j

|αj
i µj | = sup

i

∑

j

|αj
i |β−1

∑

k

|βk
j |

= β−1 sup
i

∑

k

∑

j

|αj
i β

k
j | = β−1‖B+A+‖l1→l1 ≤ α ¥

Consider the spectral radius ρ(A) of a m×m matrix A,

ρ(A) = {max |λ| : λ ∈ SpecA} = lim
n→∞

‖An‖1/n
l1→l1

If A has non-negative entries and if P is a canonical projector on a coordinate
subspace, then the entries of PAP do not exceed the related entries of A, therefore
ρ(PAP ) ≤ ρ(A) – this immediately follows from the second formula for the spectral
radius.

Lemma 2. Let A be an n× n matrix.

(6) inf
Λ
‖ΛAΛ−1‖l1→l1 = ρ(A+)

where Λ is a diagonal n× n matrix with non-negative entries.

Proof.
Obviously,

Spec A+ = SpecΛA+Λ−1

and
SpecA+ ⊂ {z ∈ C : |z| ≤ ‖ΛA+Λ−1‖l1→l1 = ‖ΛAΛ−1‖l1→l1}

so
ρ(A+) ≤ inf

Λ
‖ΛAΛ−1‖l1→l1 .

Since the transposed matrix A∗+ is non-negative then, by the Frobenius-Perron
Theorem, there exists a non-negative eigenvector λ, whose eigenvalue is ρ(A∗+) =
ρ(A+). Let Λ be the diagonal matrix with this vector λ on the diagonal. If λ has
no zero components, then the matrix Λ is invertible, and one can easily verify that

‖ΛAΛ−1‖l1→l1 = ‖ΛA+Λ−1‖l1→l1 = ρ(A+),

and the result is proven.
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If λ has zero components, we consider the canonical projector P onto the coordi-
nate subspace spanned by the zero coordinates of λ and consider the non-negative
matrix PA+P. As it was explained above,

ρ(PA+P ) ≤ ρ(A+)

Let λ1 be the Frobenius-Perron vector for PA∗+P. If the only zero components of
λ1 are the obvious ones, we consider a diagonal matrix Λ with the diagonal λ+ ελ1

with a positive ε. This matrix is invertible, and one can easily see that

‖ΛAΛ−1‖l1→l1 = ‖ΛA+Λ−1‖l1→l1 → ρ(A+), as ε → 0+.

So the Lemma is proven for this situation.
If λ1 has nontrivial zero components, we repeat the same trick, and so on. As a

result we are able to prove the Lemma in all situations. ¥

Lemma 3 (Interpolation Lemma). Let Λp, Mp, p = 1, 2, ..., be diagonal ma-
trices with nonnegative diagonal elements λip, µip, respectively. Assume that

∀i, j 1 ≤
∑

p

µip

λjp

Then for every matrix A

‖A‖l1→l1 ≤
∑

p

‖Λ−1
p AMp‖l1→l1

Proof.

‖A‖l1→l1 = sup
i

∑

j

|αj
i |

≤ sup
i

∑

j

∑
p

µip

λjp
|αj

i | ≤
∑

p

sup
i

∑

j

µip

λjp
|αj

i |

=
∑

p

‖Λ−1
p AMp‖l1→l1 ¥

Theorem 1. The vectors fi =
∑

αj
i ej , i = 1, 2, ..., form an absolute basis in E

if and only if the matrix A is invertible and

(7) ∀p ∃m(p) ‖ΛpA+(A−1)+Λ−1
m(p)‖l1→l1 ≤ 1

where A = (αj
i )
∞
i,j=1, A−1 is its inverse (all related series are absolutely convergent),

Λp is the diagonal matrix (δj
i λip)∞i,j=1

Proof.

We already know that if {fi, i = 1, 2, . . . } form an absolute basis then the matrix
A is invertible and all related series are absolutely convergent. Let

A = (αj
i ), A−1 = (βj

i )



SOME REMARKS ON QUASI-EQUIVALENCE OF BASES IN FRÉCHET SPACES 7

By Lemma 1, the condition (7) is equivalent to the fact that for every p there
exists a diagonal matrix Mp = (µjpδ

i
j)
∞
i,j=1, such that

(8) ‖Λp AM−1
p ‖l1→l1 ≤ 1

and

(9) ‖MpA
−1 Λ−1

m(p)‖l1→l1 ≤ 1

Then (8) simply means that

1 ≥ sup
i

∑

j

µ−1
ip |αj

i |λjp

or

(10) ∀i µip ≥
∑

j

|αj
i |λjp =

∑

j

|ej(fi)| ]ej [p= ‖fi‖p

As for (9), it means that

∀x ∈ l1 ‖MpA
−1 Λ−1

m(p)x‖l1 ≤ ‖x‖l1

or, putting y = Λ−1
m(p)x

(11) ∀y, Λm(p)y ∈ l1
∑

i

|
∑

j

yjβi
jµip| ≤

∑

i

|yi|λi,m(p)

To complete the proof we must verify the following

Claim. Conditions (8) - (9) are equivalent to the fact that the vectors fi =
∑

αj
i ej

form an absolute basis in E.

Proof of the claim.
Let us first show that conditions (8), (9) imply that {fi, i = 1, 2, . . . } is an

absolute basis in E.
Take any y ∈ E, decompose it as y =

∑
i yiei. Let ŷ denote the coefficient

sequence (yi)∞1 . The series

∑

i

|yi|λi,m(p) = ‖y‖m(p) = ‖Λm(p)ŷ‖l1

converge for every p ≥ 1, since the basis (ei) is assumed to be absolute.
Consider the series

∑
j(

∑
i yiβj

i )fj . The inequality (11) means that for every
y ∈ E, y =

∑
i yiei the expression

∑
j µjp|

∑
i yiβj

i | is finite, so the series
∑

i yiβj
i

are convergent.
We are going to verify that

y =
∑

j

(
∑

i

yiβj
i )fj
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and that this series is absolutely convergent in E, i.e., the series
∑

j

‖fj‖p|
∑

i

yiβj
i |

converges for every p ≥ 1. (Recall that the system of seminorms {‖·‖p, p = 1, 2, . . . }
is equivalent to the initial one.)

Applying (10) and (11), we get
∑

j

‖fj‖p|
∑

i

yiβj
i | ≤

∑

j

µjp|
∑

i

yiβj
i | ≤ ‖y‖m(p) < ∞

Therefore
‖y −

∑

j≤N

(
∑

i

yiβj
i )fj‖p = ‖y −

∑

i

yi
∑

j≤N

βj
i fj‖p

= ‖y −
∑

i

yi(ei −
∑

j>N

βj
i fj)‖p = ‖

∑

i

yi
∑

j>N

βj
i fj‖p

= ‖
∑

j>N

(
∑

i

yiβj
i )fj‖p ≤

∑

j>N

‖fj‖p |
∑

i

yiβj
i |

≤
∑

j>N

µjp|
∑

i

yiβj
i | → 0

To prove that the decomposition of x ∈ E with respect to the system {fi, i =
1, 2, . . . } is unique, we assume the opposite and obtain a decomposition 0 =

∑
i xifi,

where the series is convergent in E. Applying the continuous functionals ej (whose
existence follows from the assumption that {ej , j = 1, 2, . . . } is a basis) to the both
sides of the decomposition, we get:

0 =
∑

i

xiαj
i , j = 1, 2, . . .

Since the matrix A is invertible, we get

xi = 0, i = 1, 2, . . .

Now let us show that the fact that {fi, i = 1, 2, . . . } is an absolute basis in E
implies (8), (9).

We may take ] · [p = ‖ · ‖p since the system of seminorms (‖ · ‖p) is equivalent to
the system ( ] · [p). By (1),

∀p ∃m(p) : ∀i ‖fi‖p ≤ |fi|m(p), |ei|p ≤ ‖ei‖m(p)

or ∑

i

|αj
i |λip ≤ ‖fi‖m(p) = µi,m(p)

∑

j

|βj
i | ‖fj‖p ≤ λi,m(p)

or
‖ΛpAM−1

m(p)‖l1→l1 ≤ 1, ‖MpA
−1Λ−1

m(p)‖l1→l1 ≤ 1

This completes the proof. ¥

The following theorem is an immediate corollary of the above result:
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Theorem 2. Let K(λip) and K(µip) be two Köthe spaces. They are isomorphic to
each other if and only if there exist two mutually inverse matrices A and A−1 such
that for any p there exists m(p), satisfying the following conditions

‖Λp A−1 M−1
m(p)‖l1→l1 ≤ 1

‖Mp A Λ−1
m(p)‖l1→l1 ≤ 1

where
Λp = (λipδ

j
i )
∞
i,j=1, Mp = (µipδ

j
i )
∞
i,j=1

Nuclear Fréchet spaces, introduced by A. Grothendieck in [8, 9], occupy a very
special place among all Fréchet spaces. They have many remarkable properties,
giving a foundation to a rather widespread hope that it is possible to develop a
reasonable structure theory for, at least, large subclasses of such spaces.

An especially important part of such future theory should be a manageable
criterion for two spaces to be isomorphic. Since there are numerous examples of
nuclear Fréchet spaces without bases (the first ones constructed by B. Mityagin and
myself in 1974, see [15]), a seemingly much more approachable class is formed by
nuclear Fréchet spaces with bases. By the Dynin-Mityagin theorem [7], every basis
in a nuclear Fréchet space is absolute, so such a space is naturally isomorphic to a
Köthe sequence space. Therefore it is very important to obtain a working criterion
of isomorphism for Köthe nuclear spaces. Theorem 2 above does not give a good
criterion since it reduces the problem of isomorphism to the existence of a pair
of mutually inverse matrices, which is only a slight reformulation of the definition
of isomorphism. If the Quasi-equivalence Conjecture is true then it does provide,
maybe, the best possible criterion of this type, reducing the problem of isomorphism
to a purely combinatorial question of existence of a permutation of naturals with
the required properties.

The nuclearity of a Köthe space

K(λip) = {x = (xi) :
∑

i

|xi|λip = |x|p < ∞}

can be expressed as follows (see, e.g., [12]):

∀p ∃p′
∑

i

λip

λi,p′
≤ 1

We may always assume that p′ = p + 1, so

(12)
∑

i

λip

λi,(p+1)
≤ 1

This can be rewritten as follows:

‖Λ−1
p+1Λp‖l∞→l1 ≤ 1

Therefore the system of seminorms

∞|x|p = sup
i
|xi|λip

is equivalent to the initial one. This immediately implies the following result:
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Theorem 2′. Let K(λip) and K(µip) be two nuclear Köthe spaces. They are
isomorphic if and only if there exist two mutually inverse infinite matrices A and
A−1 such that for any p there exists m(p), satisfying the following conditions

‖Λp A−1 M−1
m(p)‖l1→l∞ ≤ 1

‖Mp A Λ−1
m(p)‖l1→l∞ ≤ 1

where
Λp = (λipδ

j
i )
∞
i,j=1, Mp = (µipδ

j
i )
∞
i,j=1

In other words, if A = (αj
i ), A−1 = (βj

i ), then

|βj
i | ≤ inf

p

µi,m(p)

λjp
, |αj

i | ≤ inf
p

λi,m(p)

µjp

Problem. Consider two matrices (P j
i ), (Qj

i ) with non-negative entries. Under
what conditions on P, Q does there exist a pair of mutually inverse matrices (αj

i ), (β
j
i )

dominated by the given ones, i.e., such that

∀i, j |αj
i | ≤ P j

i , |βj
i | ≤ Qj

i ?

2. Quasi-equivalent absolute bases in a Fréchet space.

If two absolute bases (ei)∞1 and (fi)∞1 are quasi-equivalent then there exists a
sequence of nonzero scalars (γi)∞i=1, a permutation σ : N→ N, such that the linear
operator T uniquely defined by the conditions

Tei = γifσ(i), i = 1, 2, . . .

is an automorphism of the space E. Note that the inverse operator is uniquely
defined by the conditions

T−1fi = γ−1
σ−1(i)eσ−1(i), i = 1, 2, . . .

Taking (1) into account we see that this means the following: for every p there
exists n(p) such that

∀x ∈ E ]Tx[p≤ ]x[n(p), ]T−1x[p≤ ]x[n(p)

Since each of the systems of seminorms (‖ · ‖p)p≥1, (| · |p)p≥1, is equivalent to the
initial system (] · [p)p≥1 we may arbitrarily replace seminorms of one system by
seminorms of another. So, we may rewrite the above inequalities as follows: for
every p there exists m(p) such that

∀x ∈ E |Tx|p ≤ ‖x‖m(p), ‖T−1x‖p ≤ |x|m(p)

Decomposing x =
∑

i xiei and x =
∑

i yifi, we get:

∀x ∈ E
∑

i

|xiγi|µσ(i),p ≤
∑

i

|xi|λi,m(p)
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∀x ∈ E
∑

i

|yiγ−1
σ−1(i)|λσ−1(i),p ≤

∑

i

|yi|µi,m(p)

This is obviously equivalent to the conditions:

∀i |γi|µσ(i),p) ≤ λi,m(p)

∀i |γ−1
i |λip ≤ µσ(i),m(p)

Eliminating γi, we get:

∀i λip

µσ(i),m(p)
≤ λi,m(q)

µσ(i),q

So, the quasi-equivalence of the bases under consideration is equivalent to the ex-
istence of a function m : N→ N and a permutation σ : N→ N such that

(13) ∀i ∀p λipµσ(i),q

λi,m(q)µσ(i),m(p)
≤ 1

As it was first observed by B. Mityagin [14], it is sufficient (and certainly necessary)
to show the existence of an injective mapping σ : N → N. Then a version of the
usual Cantor-Bernstein argument (which proves that two sets can be bijectively
mapped one onto another provided each of them can be injectively imbedded into
another) gives the existence of the needed bijection (see [14] for details). Let us
consider the following set:

Ki(p, q; P, Q) = {n ∈ N :
λipµnq

µnP λiQ
≤ 1}

We need to show that there exists a function m : N→ N such that there exists an
injection σ : N→ N such that

σ(i) ∈ Ki
m

def
=

⋂
p,q

Ki(p, q; m(p),m(q))

It is obvious that such an injection exists only if for every finite subset S of N
the number of elements in S does not exceed the number of elements in the set
Sm

def
=

⋃
i∈S Ki

m :
#S ≤ #Sm

But it is not at all obvious that this condition is also sufficient for the existence of
the injection in question, provided the sets Ki

m are finite. This assertion is known
as the Hall-König Theorem, and B. Mityagin was the first to realize its relevance
to the Quasi-equivalence Problem [14].

It is easy to show that the sets Ki
m are finite for a nuclear space E, actually what

we need is not nuclearity, but a weaker property, namely, the fact that the space is
a Schwartz space, which in case of Köthe spaces boils down to the condition

λip/λi,(p+1) → 0, µip/µi,(p+1) → 0, as i →∞
Obviously, every nuclear space is a Schwartz space. Consider the set

Ki(p, P + 1; P, Q) = {n ∈ N :
λipµn,(P+1)

µnP λiQ
≤ 1}
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This set is finite, since
µn,P /µn,(P+1) → 0, as n →∞

Taking P = m(p), q = P + 1, Q = m(m(p) + 1), we see, that Ki
m is a part of a

finite set Ki(p, P + 1; P, Q).

Let us formulate the result in a slightly different manner:

Two bases in question are not quasi-equivalent if for any function m : N → N
there exists a finite set S such that

#S > #Sm = #
⋃

i∈S

⋂
p,q

Ki(p, q;m(p), m(q))

This means that for every pair (i, n) ∈ S×(N\Sm) there exists a pair (p, q) ∈ N×N
such that

(14)
λipµnq

µn,m(p)λi,m(q)
> 1

Let
Lm(p, q) = {(i, n) ∈ N× N :

λipµnq

µn,m(p)λi,m(q)
> 1}

Then these sets cover the set S × (N \ Sm) :⋃
p.q

Lm(p, q) ⊃ S × (N \ Sm)

Let us remark that if q ≤ m(p) and p ≤ m(q) (we always assume that p ≤
m(p), q ≤ m(q)), then Ki(p, q; m(p), m(q)) = N, so these sets are not interesting in
our considerations. Therefore we always assume that either q > m(p) or p > m(q).

The fact that the systems {ei, i = 1, 2, . . . } and {fi, i = 1, 2, . . . } are absolute
bases can be expressed by the following inequalities (recall (8), (9), (1)):

(15)
‖Λp AM−1

p+1‖l1→l1 ≤ 1/2

‖MpA
−1 Λ−1

p+1‖l1→l1 ≤ 1/2
Therefore we readily obtain that

‖Λq ·(A+(A−1)+)m(q)−q−1 ·A+ ·M−1
m(q)Mp ·(A−1)+(A+(A−1)+)m(p)−p−1 ·Λ−1

m(p)‖l1→l1

≤ (1/2)2m(q)+2m(p)−2q−2p = (1/4)m(q)+m(p)−q−p

By Lemma 1, this condition allows to reconstruct the missing diagonal matrices.
Let C = A+(A−1)+. Obviously, C dominates the identity matrix. We can

rewrite:
‖ΛqC

m(q)−q−1A+M−1
m(q)Mp(A−1)+Cm(p)−p−1Λ−1

m(p)‖l1→l1

≤ (1/4)m(q)+m(p)−q−p

Further, for the spectral radius of this matrix, we have

ρ(Λ−1
m(p)Λq · Cm(q)−q−1 ·A+ ·M−1

m(q)Mp · (A−1)+ · Cm(p)−p−1)

≤ ‖Λm(p)Λ−1
m(p)ΛqC

m(q)−q−1A+M−1
m(q)Mp(A−1)+Cm(p)−p−1Λ−1

m(p)‖l1→l1

≤ (1/4)m(q)+m(p)−q−p

In relations (13) there appear only ratios
λip

λn,m(q)
so only these ratios really matter.

Therefore we actually may choose the sequence Λm(p) arbitrarily, and so, by Lemma
2, the previous estimate is sharp.
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Lemma 4. Let A = (αj
i ) be a n× n matrix with non-negative entries. Then

∀i αi
i ≤ ρ(A)

Proof.
Since the (i, i)-th element of An is not smaller than (αi

i)
n for a non-negative

matrix A, we get
αi

i ≤ (‖An‖l1→l1)
1/n → ρ(A) ¥

Let us show that under some assumptions on the matrices Λp, Mp, A,A−1 the
relations (14), (15) are self contradictory, i.e., the related bases are quasi-equivalent.

We first give another proof to a theorem due to L. Crone and W. B. Robinson
[1] and V.P. Kondakov [10].

An absolute basis {ei, i = 1, 2, . . . } is called regular if for any p the sequence

λip

λi,p+1

is decreasing in i.
This notion was introduced by M.M. Dragilev [4]. It is known that if a Fréchet

space has an absolute regular basis then one can rearrange any other absolute basis
{fi, i = 1, 2, ..., } so that it will become a regular basis (see, e.g., [5]).

Theorem (Crone-Robinson-Kondakov). Let E be a Fréchet - Schwartz space
with a regular absolute basis {ei, i = 1, 2, . . . }. Then any absolute basis {fi, i =
1, 2, . . . } of this space is quasi-equivalent to the basis {ei, i = 1, 2, . . . }.
Proof.

Assume the opposite and let {fi, i = 1, 2, . . . } be an absolute basis, which is
not quasi-equivalent to {ei, i = 1, 2, . . . }. We may assume that this new basis is
also regular. Because of the assumed non-quasi-equivalence of the bases, for every
function m : N→ N there exists a finite set S ⊂ N such that

#S > #Sm

Therefore the set S× (N\Sm) intersects the diagonal {(i, i) ∈ N×N}. Let (i0, i0) ∈
S × (N \ Sm).

Since the sets Lm(p, q) cover the set S × (N \ Sm) there exists a pair p0, q0 such
that (i0, i0) ∈ Lm(p0, q0),

Let us consider the case m(q0) > q0 > m(p0) > p0, (as for the remaining case
m(p0) > p0 > m(q0) > q0, it can be treated in the same way).

Under this assumption the numbers
λip0

λi,m(q0)
are decreasing in i, and the numbers

µjq0

µj,m(p0)
are increasing in j. So, for every i ≤ i0, and every j ≥ i0 we have

λip0µjq0

µj,m(p0)λi,m(q0)
≥ 1

Therefore the whole set r = {(i, j) : i ≤ i0 ≤ j} is covered by Lm(p0, q0), i.e.,

r ⊂ Lm(p0, q0)
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Let q = {(i, j) : i ≤ i0, j < i0}.
Let A1 = (αj

i )(i,j)∈q, B1 = (βi
j)(i,j)∈q, A2 = (αj

i )(i,j)∈r, B2 = (βi
j)(i,j)∈r.

On one hand, it is obvious that

A1B1 + A2B2 = Ii0

where Ii0 is the identity matrix of the size i0 × i0. The matrix A1B1 is degenerate
(A1 is of the size i0 × (i0 − 1)), so Ii0 − A2B2 is degenerate, so A2B2 has a fixed
vector, therefore 1 ∈ Spec A2B2, and for the spectral radius of A2B2 we have:

ρ(A2B2) ≥ 1

Let us show that, on the other hand, our assumptions imply that the spectral
radius of A2B2 is very small:

Let

Λ =

(√
λi,q0

λi,m(p0)
δj
i

)

i,j≤i0

M =
(√

µi,p0

µi,m(q0)
δj
i

)

i,j≥i0

Then the matrix ΛA2M is entrywise greater than the matrix A2, and the matrix
MB2Λ is entrywise greater than the matrix B2. Therefore, the following estimate
holds for the spectral radii:

ρ(A2B2) ≤ ρ(ΛA2M
2B2Λ) = ρ(Λ2A2M

2B2)

≤ ρ(Λ−1
m(p0)

Λq0A+M−1
m(q0)

Mp0(A
−1)+)

≤ ρ(Λ−1
m(p0)

Λq0C
m(q0)−q0−1A+M−1

m(q0)
Mp0(A

−1)+Cm(p0)−p0−1)

≤ (1/4)m(q0)+m(p0)−q0−p0 < 1

This contradiction completes the proof. ¥

Theorem 3. Let E be a nuclear Fréchet space with bases {ei, i = 1, 2, . . . } and
{fi, i = 1, 2, . . . }. Let, as usual, ei =

∑
j αj

i fj , fi =
∑

j βj
i ej , and let A, A−1 = B

denote the related matrices A = (αj
i )
∞
i,j=1, B = (βj

i )
∞
i,j=1. If these matrices satisfy

the condition B = M A∗ Λ, where M and Λ are some diagonal matrices, then the
bases {ei} and {fi} are quasi-equivalent.

Proof.
Assume the opposite - let the bases be non-quasi-equivalent. Then for every

function m : N→ N there exists a finite set S ∈ N such that

#S > #Sm

By the condition of the Theorem B = M A∗ Λ. This means that an appropriate
scaling will make B = A∗, i.e., the bases are orthogonal in some wider Hilbert
space. We assume that this scaling is already done and

A−1 = B = A∗
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Let s = S × Sm, t = S × (N \ Sm). Let

A1 = (αj
i )(i,j)∈s, B1 = (βj

i )(j,i)∈s, A2 = (αj
i )(i,j)∈t, B2 = (βj

i )(j,i)∈t

Note that, according to our assumption, B2 = A∗2.
As before, using the obvious identity A1B1 + A2B2 = I#S and the assumed

inequality #S > #Sm, we get:

1 ≤ ρ(A2B2) = ρ(A2A
∗
2)

Now we show that
1/4 ≥ ρ(A2A

∗
2)

which will conclude the proof.
Since (ei) and (fi) are (absolute) bases we have

‖Λp AM−1
p+1‖l1→l1 ≤ 1/2

and
‖MpB Λ−1

p+1‖l1→l1 ≤ 1/2

Since E is assumed to be nuclear, we may replace the l1-norms by the l∞-norms
and get

‖MpB Λ−1
p+1‖l∞→l∞ ≤ 1/2

which can be rewritten as

‖Λ−1
p+1B

∗Mp‖l1→l1 ≤ 1/2

or
‖Λ−1

p+1AMp‖l1→l1 ≤ 1/2

Therefore
‖Λp AM−1

m(p)‖l1→l1 ≤ (1/2)m(p)−p

and
‖Λ−1

m(p)A Mp‖l1→l1 ≤ (1/2)m(p)−p

This immediately implies that

‖Λp A2 M−1
m(p)‖l1→l1 ≤ (1/2)m(p)−p

and
‖Λ−1

m(p)A2 Mp‖l1→l1 ≤ (1/2)m(p)−p

( since A2 = (αj
i )(i,j)∈t we restrict the diagonal matrices Λp to {(i, j) ∈ (N \ Sm)×

(N \ Sm)} and Mp to {(i, j) ∈ S × S}.
For every (i, j) ∈ t there exist p, q such that

(i, j) ∈ Lm(p, q)

so
1 ≤ λipµjq

µj,m(p)λi,m(q)
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therefore either 1 ≤ λip

µj,m(p)
or 1 ≤ µjq

λi,m(q)
. Anyway,

1 ≤
∑

q

µjq

λi,m(q)
+

∑
p

λip

µj,m(p)

Recalling that A2 = (αj
i )(i,j)∈t and applying the Interpolation Lemma 3, we see

that
‖A2‖l1→l1 ≤

∑
q

‖Λq A2 M−1
m(q)‖l1→l1 +

∑
p

‖Λ−1
m(p)A2 Mp‖l1→l1

≤ 2
∑

p

(1/2)m(p)−p

Choosing the sequence m(p), p = 1, 2, ..., sufficiently fast growing, we see that

‖A2‖l1→l1 ≤ 1/2

Replacing the l1−norms by l∞−norms, we see that

‖A2‖l∞→l∞ ≤ 1/2

or
‖A∗2‖l1→l1 ≤ 1/2

So we get:
ρ(A2A

∗
2) ≤ ‖A2A

∗
2‖l1→l1 ≤ 1/4 ¥

Theorem 4. Let E be a Fréchet - Schwartz space with absolute bases

{ei, i = 1, 2, . . . } and {fi, i = 1, 2, . . . }

If the transformation matrices A and A−1 = B are triangular then the bases {ei}
and {fi} are quasi-equivalent.

Proof.
Assume the opposite. Then, as earlier, we come to the conclusion that for any

function m : N→ N there exists a finite set S such that there exists

(i, i) ∈ S × (N \ Sm).

Note that αi
iβ

i
i = 1 since the matrices A and B are triangular and mutually inverse.

Since (i, i) ∈ S × (N \ Sm), there exist p, q such that (i, i) ∈ Lm(p, q). Therefore

|αi
iβ

i
i | ≤ λip|αi

i|µ−1
i,m(p)µiq|βi

i |λ−1
i,m(q)

≤
∑

j

λip|αi
j |µ−1

j,m(p)µjq|βj
i |λ−1

i,m(q)

= (Λp(A2)+M−1
m(p)Mq(B2)+Λ−1

m(q))
i
i
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Applying Lemma 4, we see that

|αi
iβ

i
i | ≤ ρ(Λp(A2)+M−1

m(p)Mq(B2)+Λ−1
m(q))

≤ ‖Λp(A2)+M−1
m(p)Mq(B2)+Λ−1

m(q)‖l1→l1

≤ (1/4)m(p)+m(q)−p−q

Choosing the sequence m(p), p = 1, 2, ..., sufficiently fast growing, we come to a
contradiction with the fact that αi

iβ
i
i = 1. ¥

Since ”any” matrix can be represented as a product of an orthogonal and a
triangular matrices, it is tempting to try to prove the Quasi-equivalence conjecture
combining the above two results. In this direction we can prove the following result.

Let us first introduce a new notion:

Definition. An absolute basis {ei, i = 1, 2, . . . } in a Fréchet space E is called
subregular if

∀p ∃P sup
i,j:j≥i

]ei[p
]ej [P

< ∞

Here ] · [p, p = 1, 2, . . . , is a fundamental system of seminorms in E.

Obviously, a regular basis can be made subregular by appropriate scalings (forc-

ing ]ei[1 = 1, then ]ei[p =
]ei[p
]ei[1

is increasing in i – this guarantees subregularity).

It is not difficult to present examples of subregular bases which are not regular

(let ]ei[p be increasing in i, make
]ei[p
]ei[q

very far from monotonic - this will destroy

regularity).

Theorem 5. Let E be a nuclear Fréchet space with a subregular basis {ei, i =
1, 2, . . . }. Let {fi, i = 1, 2, . . . } be another basis in E. Assume that the following is
true for the related transformation matrices A,B = A−1 :

‖A‖l1→l2 < ∞, ‖B‖l1→l2 < ∞

Then these bases are quasi-equivalent.

Proof.
Since ‖A‖l1→l2 < ∞, the columns of the matrix A are vectors from l2. Therefore

we can apply the Schmidt orthogonalization procedure to the columns of the matrix
A and thus represent it as a product of an upper triangular matrix T and an
orthogonal matrix U :

A = UT, B = A−1 = T−1U−1 = T−1U∗

Let T = (tji ) and T−1 = (τ j
i ). Then tij = τ i

j = 0 for j < i. Because of the
assumptions of the Theorem

‖T‖l1→l2 = ‖U−1A‖l1→l2 ≤ ‖U−1‖l2→l2‖A‖l1→l2 = ‖A‖l1→l2 < ∞
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Similarly,
‖T−1‖l1→l2 < ∞

Therefore
|tji | ≤ (

∑

k

|tki |2)1/2 ≤ ‖T‖l1→l2

and
|τ j

i | ≤ ‖T−1‖l1→l2

We will show that the system gi =
∑

j tjiej , i = 1, 2, ..., forms an (absolute)
basis in E. Then the bases {gi} and {ei} have triangular transformation matrices,
and therefore they are quasi-equivalent, by Theorem 4. The bases {fi} and {gi}
have orthogonal transformation matrices and they are quasi-equivalent by virtue of
Theorem 3. So we will be able to prove the result.

By Theorem 1, we need to show that

∀p ∃P ‖ΛpT+(T−1)+Λ−1
P ‖l1→l1 ≤ 1

or,
sup

i

∑

j

λip

∑

k

|tikτk
j |λ−1

jP ≤ 1

Choose Q such that

sup
i,j:j≥i

λip

λj,Q−1
≤ 1

and ∑

j

λj,Q−1

λj,Q
≤ 1

This is possible because of the assumed subregularity and nuclearity. Then

sup
i

∑

j:j≥i

λip

λj,Q
≤ 1

and
‖ΛpT+Λ−1

Q ‖l∞→l∞ = sup
i

∑

j

λip|tij |λ−1
jQ

= sup
i

∑

j:j≥i

λip|tij |λ−1
jQ ≤ ‖T‖l1→l2

Similarly, choose P such that

sup
i,j:j≥i

λiQ

λj,P−1
≤ 1

and ∑

j

λj,P−1

λj,P
≤ 1
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Then
sup

i

∑

j:j≥i

λiQ

λj,p
≤ 1

and
‖ΛQ(T−1)+Λ−1

P ‖l∞→l∞ = sup
i

∑

j

λiQ|τ i
j |λ−1

jP

= sup
i

∑

j:j≥i

λiQ|τ i
j |λ−1

jP ≤ ‖T−1‖l1→l2

and therefore
‖ΛpT+(T−1)+Λ−1

P ‖l∞→l∞

≤ ‖ΛpT+Λ−1
Q ‖l∞→l∞‖ΛQ(T−1)+Λ−1

P ‖l∞→l∞ < ∞
and the result is completely proven. ¥
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