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Abstract. We study the facial structure of convex polyhedra in-
variant under the natural action of a Coxeter group. The results
are applied to the study of faces of maximal dimension of orbihedra
related to some non-Coxeter groups.

1. Introduction

Let G be a finite Coxeter group naturally acting on a finite dimen-
sional real space V. We study the geometry of convex G-invariant poly-
hedra.

The simplest convex G-invariant polyhedron is a G-orbihedron Co G x
– the convex hull of the G-orbit of x, x ∈ V. Geometric properties
of G-orbihedra play important roles in many problems, ranging from
Topology and Algebra to Operator Theory and Statistics– see, e.g.,
[1, 8, 9, 10, 12, 14, 17, 18, 19]. G-orbihedra may be viewed as building
blocks of general G-invariant convex polyhedra – every such polyhedron
may be represented as the convex hull of a finite number of G-orbihedra.

We study the facial structure of a convex G-invariant polyhedron. It
is natural to start with faces of maximal dimension. One can always
introduce a G-invariant bilinear symmetric positive definite form on
V, so we may assume that V is Euclidean and that G is a subgroup
of the orthogonal group. The most simple and fundamental geometric
characteristic of such face is its normal vector which can be identified
with an extreme vector of the polar polyhedron.
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Normals to faces of maximal dimension for the simplest G-invariant
polyhedron — a G-orbihedron — can be completely described in conve-
nient geometric terms, see [19], or Section 3 below. Many deep problems
require very precise understanding of both the generic structure of such
normals and the sorts of degenerations that may occur when the vector
x approaches special subsets of V . In the present paper we use this
description to study the geometric structure of faces of all dimensions
for G-orbihedra.

As it has been already mentioned, every G-invariant convex polyhe-
dron can be represented as a convex hull of finitely many G-orbihedra.
The minimal number of the required G-polyhedra is a natural measure
of complexity of the G-invariant convex polyhedron. If this number is
small (compared to the dimension of the space) then only vectors of
very specific structure can serve as normals to faces of the maximal
dimension. If this number is large (greater than or equal to the dimen-
sion of the space), then any nonzero vector can be a normal to a face
of a G-invariant convex polyhedron.

As soon as we depart from the natural representation of a Coxeter
group, the problem of description of the convex structure of the related
orbihedra becomes much more difficult. For example, consider a Cox-
eter group G naturally acting on V, and let G2 = G×G act on V ⊗ V
in the usual tensor way:

(g1, g2)(v1 ⊗ v2) = (g1v1)⊗ (g2v2).

Note that this action on V ⊗ V is not generated by reflections across
hyperplanes. Nonetheless, G2 is a Coxeter group, but its natural rep-
resentation is on V

⊕
V :

(g1, g2)(v1 ⊕ v2) = (g1v1)⊕ (g2v2).

Preliminary computer experiments (C.K. Li, I. Spitkovsky and N. Zobin)
show that the structure of normals to faces of the orbihedra related to
the tensor action of G2 may be quite wild even if dim V = 3. This is
not too surprising — see [2] for a study of closely related topics from
the Complexity Theory viewpoint.

Nevertheless, for groups of operators close to Coxeter ones it is
still possible to obtain rather detailed results concerning the geometric
structure of the related orbihedra. Consider a finite group K of op-
erators, acting on V. It may contain reflections across hyperplanes, so
consider the subgroup G generated by all such reflections in K. Assume
that G acts effectively (i.e., without nontrivial fixed vectors) on V, so G
is a Coxeter subgroup. The description of K-orbihedra can be reduced
to a description of G-invariant convex polyhedra. If the index of G in K
is small compared to the dimension of V (in this case K should be called
a quasi-Coxeter group) then we can use the Coxeter machinery, which
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makes it possible to describe the geometric structure of K-orbihedra.
In particular, we describe the normals to faces of maximal dimension
for S2(G)-orbihedra, where S2 is the group of permutations of {1, 2},
G is a Coxeter group acting on V, and the group S2(G) = S2×G2 acts
on the space V 2 = V

⊕
V as follows:

(σ, g1, g2)(v1 ⊕ v2) = (g1vσ(1))⊕ (g2vσ(2)).

Actually, it was this problem that stimulated the whole project. Group
S2(G) has an index 2 Coxeter subgroup G2, so K is quasi-Coxeter. In
the case when G = B2 this problem was studied and solved by the last
two authors (see [21]), using vastly different methods which seemingly
cannot be extended even to Bm with greater m. Though the present
paper is completely independent of [21] the results and ideas from [21]
were very helpful to us. In particular, the idea of consideration of a
Coxeter subgroup already appeared in [21] though played there a rather
technical role.

The paper is organized as follows: Section 2 contains a brief introduc-
tion to Coxeter groups adjusted to our needs, in Section 3 we present
old and new results concerning the structure of normals to the faces
of G-orbihedra of maximal dimension. We describe the faces of max-
imal dimension adjacent to a given vertex of a G-orbihedron, and as
a corollary obtain some known results about simplicial orbihedra. In
Section 4 we complement results of the previous section by a descrip-
tion of faces of lower dimensions. Section 5 is devoted to description of
faces of maximal dimension for general G-invariant convex polyhedra.
We also briefly discuss applications of these results to some problems
of linear algebra. In Section 6 we apply these results to investigate the
geometric structure of K-orbihedra for quasi-Coxeter groups K, and in
particular, for the group S2(G). Section 7 contains a brief introduction
to the duality approach to Operator Interpolation, its goal is to explain
why the geometric results of the preceding sections are important in
this field.

Acknowledgments. We are thankful to Igor Dolgachev who pointed
to one of us that the questions we consider may have applications to
toroidal geometry, and to Ilya Spitkovsky for valuable discussions.

2. A Brief Review of Coxeter Groups

Let us address several facts concerning the theory of Coxeter groups.
For greater detail, consult [3], [5], or [11]. Let G be a group of lin-
ear operators on a finite dimensional real space V . Then G is called
a Coxeter group if it is finite, generated by reflections across hyper-
planes, and acts effectively (i.e., if gx = x for all g ∈ G then x = 0).
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Again, one can always introduce a G-invariant bilinear symmetric pos-
itive definite form on V, turning V into a Euclidean space, and making
all operators from G orthogonal. So we always assume that this has
already been done. By definition, a Coxeter group is a group of linear
operators, so it has a preferred representation which is called the natu-
ral representation or the natural action. One can describe Coxeter
groups in pure group-theoretic terms, namely, in terms of generators
and relations, see, e.g., [5].

2.1. Roots and weights. Consider the set MG of all mirrors —
hyperplanes H such that the orthogonal reflection across H belongs
to G. These mirrors divide V into connected components, each one a
simplicial cone. The closures of these cones are called Weyl chambers
of G. Weyl chambers are fundamental domains of G, i.e., every G-
orbit Orb G x = {gx : g ∈ G} intersects every Weyl chamber at exactly
one point, let this point be denoted by x∗ = x∗(C, G).

Fix a Weyl chamber C. A wall of C is a (dim V − 1)-dimensional
face of C, contained in a mirror. Reflections across the walls of C (i.e.,
across the related mirrors) generate the whole group G. The finiteness
of G implies that the angle between any two walls of C must equal π/k
for some natural k ≥ 2.

For every wall Wi of C, let ni be the root – a specially scaled normal
vector to Wi pointing inwards with respect to C. It is convenient for
us to choose all roots to be unit vectors (the standard normalization of
roots is different, see, e.g., [5]). Since C is a simplicial cone, for each
wall Wj there exists a unique extreme ray of C not lying on Wj. Let
ωj be a vector pointing in the direction of this extreme ray, so that
〈ni, ωj〉 = cjδij, cj > 0. Each ωj is called a fundamental weight of
G. Note that we prefer not to normalize fundamental weights, for the
standard normalization see [5]. Let RG and WG denote the sets of all
roots and, respectively, the set of all weights of G (i.e., associated with
all Weyl chambers). Since group G acts (simply) transitively on the
set of its Weyl chambers (i.e., for any two Weyl chambers C1, C2 there
exists (exactly one) g ∈ G such that gC1 = C2), then

RG =
⋃
i

Orb G ni, WG =
⋃
i

Orb G ωi.

2.2. Coxeter graphs. There is a graph Γ(G) (called the Coxeter
graph) assigned to each Coxeter group. Fix a Weyl chamber C. The
set ver (G) of vertices of the graph is in a one-to-one correspondence
with the set of walls of C. Two vertices of this graph are connected with
an edge if and only if the angle between the related walls is π/k, k ≥
3. The number k − 2 is the multiplicity of this edge. Obviously, the
Coxeter graph does not depend upon the choice of the Weyl chamber.
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In particular, every wall (but not the mirror containing this wall !)
of any Weyl chamber is associated with a vertex of Γ(G), and walls
transformed one into another by the action of G are associated with
the same vertex. Similarly, each weight ω is associated with a vertex
π(ω) of the Coxeter graph Γ(G). Obviously, π(gω) = π(ω) for every
g ∈ G. So, π(ω) actually depends only upon the G-orbit of ω. Every
vertex from ver (G) determines the G-orbit of exactly one weight (up
to a positive factor).

A Coxeter group is irreducible if and only if its Coxeter graph is
connected.

Notably, a Coxeter graph completely determines its Coxeter group,
so if Γ is a Coxeter graph, let G(Γ) denote the related Coxeter group.

There exists a full classification of connected Coxeter graphs, which
implies a full classification of irreducible Coxeter groups. It worth not-
ing that a reducible Coxeter group G is naturally isomorphic to the di-
rect product of irreducible Coxeter groups G(j) whose Coxeter graphs
are the components j of Γ(G), independently acting on mutually or-
thogonal subspaces V (j). Let J(G) denote the set of components of
Γ(G). Then

G =
∏

j∈J(G)

G(j), V =
⊕

j∈J(G)

V (j),

and if

g = (g(j))j∈J(G) ∈
∏

j∈J(G)

G(j), v =
⊕

j∈J(G)

v(j) ∈
⊕

j∈J(G)

V (j),

then

gv =
⊕

j∈J(G)

g(j)v(j) ∈
⊕

j∈J(G)

V (j).

2.3. Supports and stabilizers. Fix a Weyl chamber C, let x∗ =
x∗(C, G) be the unique vector in C ∩ Orb G x. Since x∗ ∈ C and C
is a simplicial cone, then there exists a unique decomposition of x∗ into
a positive linear combination of the related fundamental weights:

x∗ =
∑

i

λiωi, λi ≥ 0.

Let us introduce the support of x as follows:

supp G x = {πi ∈ ver (G) : λi > 0}.
In other words, a vertex πi of the Coxeter graph Γ(G) belongs to
supp G x if x∗ does not belong to the related wall Wi. One can easily
show that supp G x does not depend upon the choice of the Weyl cham-
ber C. In fact, supp G x depends only upon the G-orbit of x, therefore
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the notation supp G i is meaningful for a G-orbit i. Note that

supp G x = ∅ if and only if x = 0.

Let

J(G, x) = {j ∈ J(G) : supp G x intersects j}.
Combining the definition of supp G x with the description of the action
of a reducible Coxeter group we see that

span (Orb G x) =
⊕

j∈J(G,x)

V (j).

Now let B be an arbitrary subset of V. Define

supp G B =
⋃
x∈B

supp G x.

In particular, we shall need the carrier set of a G-invariant convex
polyhedron U which we define as

Carr G U = supp G Extr U,

where Extr U denotes the set of extreme vectors (= vertices) of the
polyhedron U.

For a subset A ⊂ V consider the stabilizer subgroup

Stab G A = {g ∈ G : ∀x ∈ A gx = x}.
This subgroup is generated by reflections across the mirrors containing
A. It has only obvious fixed vectors, namely those in V A — the inter-
section of all mirrors containing A. If A is not contained in any mirror
then we put V A = V. The orthogonal complement of V A is obviously
(Stab G A)-invariant. If we restrict the action of the subgroup Stab G A
to the subspace VA = (V A)⊥, it will act there effectively, and there-
fore it will become a Coxeter group on VA. Let GA denote this Coxeter
group:

GA = Stab G A|VA
.

Let proj A, proj A denote the orthogonal projectors onto VA, V A, re-
spectively. Obviously, I = proj A + proj A, proj A proj A = proj A proj A =
0.

There exists a useful connection between the orthogonal projector
proj A and the stabilizer subgroup Stab G A. For any finite group K of
linear operators acting on V consider the K-averaging operator

av K = (1/ card K)
∑
g∈K

g.

One can easily show that the range of the K-averaging operator is
exactly the set of fixed vectors of K.
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Lemma 2.1. Let G be a Coxeter group. Then

proj A = av Stab G A .

Proof. For x ∈ V A it is obvious that av Stab G A x = x. Since every vector
in the range of av Stab G A |VA

= av GA
is obviously fixed by the action of

Stab G A, and since Stab G A acts effectively on VA, then av Stab G A |VA
=

0, which proves the Lemma. ¤

Corollary 2.2. Let U be a convex G-invariant set. Then

proj A U = U ∩ V A.

Lemma 2.3. Let G be a Coxeter group. The origin is a relatively
interior point of Co G x for every nonzero x ∈ V.

Proof. Assuming that 0 is not in the relative interior of Co G x, we
find a nonzero vector b ∈ span Orb G x such that 〈b, gx〉 ≥ 0 for all
g ∈ G. Since G acts effectively then, by Lemma 2.1, av G = 0, so
0 = av G x = (1/ card G)

∑
g∈G gx, and then 〈b, gx〉 = 0 for all g ∈ G.

This means that b ⊥ Orb G x, and since b ∈ span Orb G x, we conclude
that b = 0, contrary to the assumption. ¤

Corollary 2.4. Let G be an irreducible Coxeter group. The origin is
an interior point of Co G x for every nonzero x ∈ V.

Lemma 2.5. Let G be a Coxeter group. Then

Co Stab G A x = proj A x + Co GA
proj A x.

In particular, Co Stab G A x is a polyhedron in an affine plane of dimen-
sion ≤ dim VA.

Let κ be a subset of the set ver (G) of vertices of the graph Γ(G). Let
Γ(G) \ κ denote the graph obtained from Γ(G) by erasing the vertices
from κ together with the edges adjacent to these vertices.

The following three useful results follow almost immediately from the
definitions and the above mentioned facts.

Lemma 2.6.

Γ(GA) = Γ(G) \ supp G A.

Lemma 2.7.

supp GA
proj A x = supp G x \ supp G A.

Corollary 2.8.

WGA
= (proj AWG) \ {0}.
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Let
mG(x, y) = sup{〈gx, y〉 : g ∈ G}.

Obviously, mG(x, y) depends only upon the G-orbits of x and y, so the
notation mG(x, i) is meaningful for x ∈ V and i a G-orbit, and for x
and i both G-orbits.

Lemma 2.9 ([19]). Vectors x and y belong to the same Weyl chamber
if and only if

mG(x, y) = 〈x, y〉.
Moreover, in this case

{z ∈ Orb G x : 〈z, y〉 = mG(x, y)} = Orb Stab G y x.

One can easily deduce from Lemma 2.9 that mG(x, y) ≥ 0, and
mG(x, y) = 0 if and only if there are no components of Γ(G) inter-
secting both supp G x and supp G y. In particular, mG(x, y) > 0 for an
irreducible group G and nonzero x and y.

3. Convex Structure of Coxeter Orbihedra

3.1. Polyhedra of full dimension and their polars. Let G be a
finite Coxeter group, maybe reducible. An orbihedron Co G x is of full
dimension (i.e., is not a subset in a proper subspace) if and only if
x is not in a proper G-invariant subspace. This happens if and only
if J(G, x) = J(G), i.e., supp G x intersects every component of Γ(G).
Let us agree that if Co G x is not of full dimension then we regard it as
a polyhedron in the subspace span Orb G x =

⊕
j∈J(G,x) V (j), and we

consider its faces of maximal dimension (= of codimension 1) in this
subspace. This means that we actually consider the orbihedron with
respect to the group

G[x] = G|span (Orb G x).

Let V [x] = V Orb G x = span (Orb G x). Obviously, Co G x = Co (G[x]) x is

of full dimension in V [x]. Also, one can easily see that Γ(G[x]) is the
disjoint union of the components of Γ(G), intersecting with supp G x :

Γ(G[x]) =
⊔
{j : j ∈ J(G, x)}.

The reason for our desire to consider only polyhedra of full dimension
is explained in the next paragraph.

For a subset U ⊂ V let

U◦ = {y ∈ V : ∀ x ∈ U 〈x, y〉 ≤ 1}.
U◦ is called the polar set of U, it is convex, closed and contains the
origin. Obviously, U◦ = (conv U)◦, where conv U denotes the convex
hull of U. If U contains the origin, then, by the Bipolar Theorem, (U◦)◦
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is the closed convex hull of U. If U is a G-invariant convex polyhedron
for a Coxeter group G then U contains the origin and therefore

U = (U◦)◦ = {y ∈ V : ∀ z ∈ U◦ 〈y, z〉 ≤ 1},
so we get a description of the polyhedron U in terms of linear inequal-
ities. It is possible to switch to the smallest possible set of inequalities
in this description. If the G-invariant convex polyhedron U is of full
dimension, then, by Lemma 2.3 it contains the origin as an interior
point and therefore its polar set U◦ is a compact polyhedron. So, by
the Krein–Milman Theorem, it is the convex hull of the set Extr (U◦)
of its extreme vectors,

U = (U◦)◦ = (Extr (U◦))◦ = {y ∈ V : ∀ z ∈ Extr (U◦) 〈y, z〉 ≤ 1},
and this is obviously the smallest possible set of linear inequalities de-
scribing the polyhedron U. Affine hyperplanes {y ∈ V : 〈y, z〉 = 1}, z ∈
Extr (U◦), carry codimension 1 faces of U, so the set Extr (U◦) is the
set of normals to faces of U of codimension 1.

Let us note that if Γ(G[x]) is not connected (= if group G[x] is
reducible) then every G-orbihedron has a natural product structure:

Co G x =
∏

j∈J(G,x)

Co G(j) proj (j)x,

where G(j) denotes the irreducible Coxeter group whose graph is j ∈
J(G, x), proj (j) denotes the orthogonal projection onto the subspace
V (j) where G(j) naturally acts.

3.2. Orbihedra — faces of codimension 1. The following result is
an immediate corollary of Lemma 2.9.

Lemma 3.1. If y ∈ Extr (Co G x)◦ then the codimension 1 face

Φ(y) = {z ∈ Co G x : 〈z, y〉 = 1}
of Co G x coincides with Co Stab G y g0x, where g0x is any vector from
Orb G x belonging to this face.

Now we can describe the set Extr (Co G x)◦.

Theorem 3.2 ([19]). Let G be a Coxeter group naturally acting on V.
Then

Extr (Co G x)◦ = {y/mG(x, y) ∈ V : supp G y consists of one vertex,

belonging to Γ(G[x]), and supp G x intersects every component of

Γ(G[x]) \ supp G y}
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Proof. It is easy to see that z ∈ Extr (Co G x)◦ if and only if the
set {gx : 〈gx, z〉 = mG(x, z) = 1} spans the whole space V [x] =
span Orb G x. Recall that by Lemma 3.1, {gx : 〈gx, z〉 = mG(x, z) =
1} = Orb Stab G z g0x, 〈g0x, z〉 = mG(x, z) = 1. By Lemma 2.5,

Co Stab G z g0x = proj z g0x + Co Gz proj z g0x,

so z ∈ Extr (Co G x)◦ if and only if Co Gz proj z g0x is of dimension
dim V [x]−1. This happens if and only if Γ((G[x])z) has exactly dim(V [x])−
1 vertices. Since, by Lemma 2.7, Γ((G[x])z) = Γ(G[x]) \ supp G z, this
can happen if and only if supp G z consists of one vertex, belonging
to Γ(G[x]), and supp (G[x])z

proj z g0x intersects every component of the
graph Γ(Stab G[x] z). By Lemma 2.7, supp (G[x])z

proj z g0x = supp G x \
supp G z, and by Lemma 2.6, Γ(Stab G[x] z) = Γ(G[x]) \ supp G z). The
Theorem is proven. ¤

Since the only vectors having one-vertex supports are weights, and
since mG(x, ω) > 0 for ω ∈ WG[x] = WG ∩ V [x], we see that z ∈
Extr (Co G x)◦ if and only if

z = ω/mG(x, ω), ω ∈ WG, π(ω) ∈ Γ(G[x]),

and

supp G x intersects every component of Γ(G[x]) \ {π(ω)}.
According to our agreement, we disregard all weights ω such that
π(ω) /∈ Γ(G[x]), i.e., such that mG(x, ω) = 0.

Combining the previous results, we arrive to the following descrip-
tion.

Theorem 3.3. Let G be a Coxeter group naturally acting in V. For
every codimension 1 face Φ of Co G x there exists a unique vector ω =
ω(Φ) ∈ WG[x], such that:

(i) supp G x intersects every component of Γ(G[x]) \ supp G ω,
(ii) Φ = Co Stab G ω g0x, where g0 ∈ G is such that g0x and ω belong

to one Weyl chamber.
Moreover, for every ω ∈ WG[x], satisfying (i), the set Φ defined in

(ii) is a codimension 1 face of Co G x.

Corollary 3.4. Let G be an irreducible Coxeter group. Let ω be a
weight such that π(ω) is an end vertex of Γ(G). Then ω /∈ Extr (Co G x)◦

if and only if supp G x = supp G ω.

Using the remark preceding Lemma 3.1, we conclude that a face Φ of
Co G x has a natural product structure if the graph Γ(G) \ {π(ω(Φ))}
is not connected. So, if group G is irreducible, then the only faces Φ
of Co G x not having the natural product structure are those for which
π(ω(Φ)) is an end vertex of Γ(G).
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3.3. Counting vertices of orbihedra. It is not difficult to find card G x
— the number of vertices in Co G x (= the number of distinct vectors in
Orb G x). It follows from the definition of the stabilizer subgroup that

card G x =
card G

card Stab G x
=

card G

card Gx

.

For every irreducible Coxeter group G the number card G is well
known and may be found, e.g., in [5]. For a reducible group G we
know that G =

∏
j∈J(G) G(j) where J(G) is the set of components of

Γ(G) and G(j) denotes the irreducible Coxeter group whose graph is
the component j. Therefore,

card G =
∏

j∈J(G)

card G(j).

Since Γ(Gx) = Γ(G) \ supp G x, we can compute the number card G x
in convenient geometric terms.

Since Co G x is of full dimension in V [x], then

card G x ≥ 1 + dim V [x] = 1 + card ver (Gx).

So, for an irreducible group G we have card G x ≥ 1 + dim V.

Lemma 3.5. Let G be an irreducible Coxeter group. Then card G x =
1 + dim V if and only if G = An and supp G x is an end vertex of
Γ(G).

Proof. The “if” part can be verified directly: the orbit of the vector
(1, 1, · · · , 1,−n) in the n-dimensional subspace {(x1, x2, · · · , xn+1) ∈
Rn+1 :

∑
i xi = 0} under the action of permutations consists of ex-

actly (n + 1) vectors. Let us concentrate on the “only if” part. If
card G x = 1 + dim V, then Co G x is a simplex in V, so (Co G x)◦ is
also a simplex, so the set Extr (Co G x)◦ consists of (1+dim V ) vectors,
therefore it contains exactly one G-orbit. But Extr (Co G x)◦ always
contains the orbit of a weight associated with an end vertex of the Cox-
eter graph, therefore, (Co G x)◦ = Co G ω, supp G ω is an end vertex .
Since Co G x = (Co G ω)◦ and the latter is a simplex, we conclude that
supp G x is also an end vertex, and, besides, Γ(G) has exactly two end
vertices. Next, the group G cannot contain −I because a simplex can-
not be central symmetric. It is known from the classification (see [5])
that An is the only irreducible Coxeter group possessing all these prop-
erties. ¤

3.4. Counting faces adjacent to a vertex. Let us obtain a more
explicit description of the faces of Co G x adjacent to the vertex x. We
may assume that supp G x intersects all components of Γ(G), so the
G-orbihedron Co G x is of full dimension.
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Fix a Weyl chamber C, assume that x ∈ C. Let ωj, j = 1, 2, · · · , dim V,
be the fundamental weights belonging to C. Then, by Theorem 3.2 the
extreme vectors of (Co G x)◦, associated with the faces of maximal di-
mension adjacent to x are precisely those from the Stab G x-orbits of
the vectors ωj/mG(x, ωj) such that supp G x intersects every component
of Γ(G) \ {π(ωj)}.

Let us introduce some terminology. We fix vector x, all forthcoming
notions depend upon x. We say that a vertex π of Γ(G) is admis-
sible (more precisely, it should be called x-admissible, but we shall
skip the label x if it does not create ambiguity) if supp G x intersects
every component of Γ(G) \ {π}. So, a vertex π of Γ(G) is admissible
if and only if the related vector ωj/mG(x, ωj), π = π(ωj), defines a
codimension 1 face of Co G x adjacent to x. The number of vectors in
the (Stab G x)-orbit of ωj is called the multiplicity of the admissible
vertex π = π(ωj). So, the sum of multiplicities of all admissible vertices
gives the number of codimension 1 faces of Co G x adjacent to x. We
shall list all admissible vertices, together with their multiplicities, in
convenient geometric terms.

Lemma 3.6. The multiplicity of an admissible vertex from supp G x
is equal to 1. The multiplicity of an admissible vertex π belonging to a
component γ of Γ(G) \ supp G x is equal to 1 + (card G(γ)/ card G(γ \
{π})).

A vertex π ∈ supp G x is called interior (or, better, x-interior) if it
is adjacent only to vertices from supp G x. All non-interior vertices of
supp G x are called boundary.

Lemma 3.7. Every interior vertex of supp G x is admissible.

Let γ be a component of Γ(G) \ supp G x. All end vertices of Γ(G),
belonging to γ, are called the principal vertices of γ.

Lemma 3.8. Every principal vertex π of a component γ of Γ(G) \
supp G x is admissible.

Since supp G x intersects every component of Γ(G) then for every
component of Γ(G) \ supp G x there exists a vertex from supp G x ad-
jacent to this component. We say that γ is acceptable (or, better,
x-acceptable) if there is exactly one vertex from supp G x adjacent to
γ.

Lemma 3.9. Every acceptable component must contain at least one
principal vertex.

Proof. Indeed, if to assume the opposite, then each end vertex π of γ is
not an end vertex of Γ(G). The graph γ must have end vertices, since a
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Coxeter graph cannot have cycles — see [5]. Therefore it must be adja-
cent to at least two other vertices of Γ(G), but since π is an end vertex
of γ, then at most one of these neighboring vertices is in γ, so at least
one of them is in supp G x. Since γ is acceptable, then exactly one of the
neighboring vertices is in supp G x. So, there are exactly two neighbor-
ing vertices, therefore π is adjacent to another vertex of γ. Therefore γ
must have another end vertex (again, no cycles!). Repeating the same
argument, we find another vertex from supp G x adjacent to γ, which
contradicts the acceptability. ¤

So, the set of end vertices of an acceptable component consists of
principal vertices plus, maybe, one non-principal vertex adjacent to
supp G x. All end vertices of an acceptable component are principal if
and only if the component consists of one principal vertex.

Corollary 3.10. The only admissible vertices of an acceptable compo-
nent are the principal vertices.

Corollary 3.11. The only non-admissible boundary vertices are those
adjacent to at least one acceptable component.

Lemma 3.12. A non-acceptable component γ either contains no prin-
cipal vertices or contains exactly one principal vertex and one branching
vertex of Γ(G).

Proof. By the definition of a non-acceptable component, there exist at
least two vertices from supp G x, adjacent to γ. This means that there
are two options:

(1) there are at least two end vertices π1, π2 of γ adjacent to supp G x,
(2) there is an end vertex π of γ adjacent to at least two vertices of

supp G x.
Consider the first option. Connected graph γ has at least two end

vertices, therefore for every end vertex of γ there exists another vertex
of γ adjacent to it. Therefore π1, π2 are not principal. If γ contains a
principal vertex then γ has at least three end vertices. But a connected
Coxeter graph cannot have more than three end vertices, so γ has ex-
actly three end vertices, including exactly one principal vertex. Since γ
has three end vertices, then, according to the classification of connected
Coxeter graphs, it must have a branching vertex. Also, according to
the classification, a connected Coxeter graph cannot have more than
one branching vertex, so the statement is true in this situation.

Consider the second option. The vertex π is not principal. Therefore,
if γ contains a principal vertex, then this principal vertex is an end
vertex of γ, different from π. Since γ is connected, then π must be
adjacent to at least one other vertex of γ. Therefore π is a branching
vertex of the component of Γ(G), containing γ. This component of
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Γ(G) is a connected Coxeter graph, so it cannot have other branching
vertices. If γ contains more than one principal vertex then one of the
vertices of γ must be branching in γ. But π is not branching in γ, and
it is the only branching vertex of the component of Γ(G), containing γ.
Therefore the statement is true in this situation as well. ¤

If a non-acceptable component γ does not contain principal vertices
then we call all vertices of γ regular.

Let a non-acceptable component γ contain a principal vertex π and
a branching vertex ρ of Γ(G). Consider the vertices along the simple
path in γ connecting π to ρ (including both). Let us call these vertices
irregular, all other vertices of γ are called regular. Note that if ρ is
an end vertex of γ (this is exactly the case (2) in the proof of Lemma
3.12) then all vertices of γ are irregular.

Corollary 3.13. The regular vertices of non-acceptable components are
the only admissible non-principal vertices in these components.

Combining the statements of this subsection, we arrive to the follow-
ing result:

Theorem 3.14. Let G be a Coxeter group, naturally acting on V. Fix
x ∈ V such that supp G x intersects every component of Γ(G). The
following is a complete list of admissible vertices and their multiplicities:

(i) every interior vertex from supp G x; its multiplicity equals 1,
(ii) every boundary vertex from supp G x, except of those adjacent

to at least one acceptable component of Γ(G)\supp G x; its multiplicity
equals 1,

(iii) every principal vertex π of a component γ of Γ(G) \ supp G x;
its multiplicity equals 1 + (card G(γ)/ card G(γ \ {π}));

(iv) every regular vertex π of a non-acceptable component γ; its
multiplicity equals 1 + (card G(γ)/ card G(γ \ {π})).
3.5. Simplicial orbihedra. A version of the next result is known (and
is important in construction of special toroidal varieties) — it is due
to Klyachko and Voskresenskii (Theorem 4 in [17]). They formulate it
as a criterion of simpliciality of a cone obtained from a Weyl chamber
by the action of a stabilizer group. We obtain this result as a direct
corollary of Theorem 3.14.

A full dimensional G-orbihedron is called simplicial if there are
exactly dim V faces of maximal dimension adjacent to every vertex
of this polyhedron. One can easily see that if G is irreducible and
supp G x = ver (G) then Co G x is simplicial. It is not hard to present
examples of non-simplicial G-orbihedra. A natural question is:

for which x ∈ V the related G-orbihedron is simplicial?
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A Coxeter graph is said to be of An type if it has no branching
vertices and has no multiple edges.

Corollary 3.15. Let G be an irreducible Coxeter group. Then Co G x
is simplicial if and only if the following is true:

(i) the graph Γ(G) \ supp G x is of An type,
(ii) every component of Γ(G) \ supp G x contains an end vertex of

Γ(G) (a principal vertex),
(iii) there are no vertices of supp G x adjacent to more than one

component of Γ(G) \ supp G x.

Proof. Due to explanations preceding Lemma 3.6 we only need to find
out when the sum of multiplicities of all admissible vertices is exactly
dim V = card ver (G).

First, all vertices from supp G x except of those adjacent to acceptable
components, are admissible and have multiplicities 1. To each non-
admissible vertex of supp G x we assign an acceptable component γ
adjacent to this vertex, and distinct non-admissible vertices of supp G x
get distinct acceptable components, due to the definitions. It may
happen that there remains an acceptable component not assigned to
any non-admissible vertex of supp G x. Every principal vertex of an
acceptable component γ is admissible, with multiplicity at least 1 +
card ver (γ). The multiplicity is exactly 1 + card ver (γ) if and only
if γ is of An type, due to Lemma 3.5. So, the sum of multiplicities of
admissible vertices in an acceptable component is greater or equal to the
number of vertices in this component plus one = the number of vertices
adjacent to this component (we agree that vertices belonging to the
component are also adjacent to it). Therefore the sum of multiplicities
of admissible vertices in all acceptable components is greater or equal
to the number of vertices in these components plus the number of non-
admissible vertices in supp G x, with equality if and only if all acceptable
components are of An type, and none of non-admissible vertices from
supp G x is adjacent to more than one acceptable component.

Every non-acceptable component γ of Γ(G)\ supp G x has admissible
vertices each of multiplicity at least 1 + card ver (γ) > card ver (γ).
So, the sum of multiplicities of admissible vertices in all non-acceptable
components is strictly greater than the number of vertices in these
components.

Therefore the sum of multiplicities of all admissible vertices equals
to the overall number of vertices if and only if all components of Γ(G)\
supp G x are acceptable, all are of An type, and none of vertices from
supp G x is adjacent to more than one component of Γ(G)\supp G x. ¤
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4. Coxeter Orbihedra: faces of lower dimensions

Now we generalize Theorem 3.3 to obtain a complete description of
all faces (not necessarily of codimension 1) of a G-orbihedron Co G x.

Each face φ of U of codimension 2 is a codimension 1 face in a face
Φ of U of codimension 1, and, further, each face of U of codimension k
is a codimension 1 face in a face of U of codimension k − 1.

Theorem 3.3 provides a description of faces of Co G x of codimen-
sion 1 in V [x]. A face Φ of Co G x of codimension 1 in V [x], contain-
ing x, is nothing else but Co Stab G ω x, where ω ∈ WG[x] is such that
supp G x intersects every component of Γ(G[x]) \ {π(ω)}. The face Φ is
a full dimension convex subset of an affine hyperplane in V [x] orthog-
onal to ω. The faces of Φ are codimension 2 (in V [x]) faces of Co G x.
Let us project Φ onto the codimension 1 subspace (ω)⊥ in V [x]. Then
proj ω Φ = Co Gω proj ω x. So, we are in the situation of a Coxeter group
Gω, and we can describe a face ψ of proj ω Φ, containing proj ω x, with
the help of Theorem 3.3:

ψ = Co Stab Gω κ proj ω x,

where supp Gω
κ consists of one vertex of Γ(G[x]ω) and supp Gω

proj ω x
intersects every component of Γ(G[x]ω) \ supp Gω

κ, and proj ω x and κ
are in one Weyl chamber of G[x]ω.

Keep in mind that Γ(G[x]z) = Γ(G[x])\supp G z, supp G[x]z proj z x =
supp G[x] x \ supp G z, and κ = proj ω τ, τ ∈ WG[x] (Lemmas 2.6, 2.7,
Corollary 2.8). Then Stab Gω κ = Stab G{ω, τ}. Repeating the same
argument, we arrive to the following result:

Theorem 4.1. Let G be a Coxeter group naturally acting on V. For
every codimension k face φ of the G-orbihedron Co G x there exists a
unique set Ω = Ω(φ) ⊂ WG, card Ω = k, of fundamental weights,
belonging to the same Weyl chamber C, such that

(i) supp G x intersects every component of Γ(G[x]) \ supp G Ω,
(ii) φ = Co Stab G Ω x∗(C, G).
Moreover, for every set Ω ⊂ WG ∩C, satisfying (i), the set φ defined

in (ii) is a codimension card Ω face of Co G x.

The set of all faces of a convex polyhedron is naturally partially or-
dered by the inclusion relation. We say that two convex polyhedra in
V are facially isomorphic if their sets of faces are isomorphic as par-
tially ordered sets. Obviously, such an isomorphism must preserve the
dimensions of the faces and the number of vertices on the corresponding
faces.

Corollary 4.2. Let G be a Coxeter group, naturally acting in V. Two
G-orbihedra Co G x and Co G y are facially isomorphic if and only if
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there exists an automorphism of the graph Γ(G) transforming supp G x
into supp G y.

5. Coxeter-invariant Convex Polyhedra

Let G be a Coxeter group naturally acting on V. Consider a gen-
eral convex G-invariant polyhedron U. Then the set Extr U of extreme
points of U is also G-invariant, and therefore it is fibered into G-orbits.
Let IG(U) denote the set of G-orbits in Extr U. Then

U = conv
⋃

i∈IG(U)

i = conv
⋃

Orb G x∈IG(U)

Co G x.

Let

NG(U) = card IG(U).

This number is a measure of complexity of the polyhedron U, in par-
ticular, if NG(U) = 1, then U is a G-orbihedron. Let us refer to a
G-invariant convex polyhedron U such that NG(U) = n, as to a (G,n)-
polytope. So, a G-orbihedron will also be called a (G, 1)-polytope.

Recall that

Carr G U = supp G Extr U =
⋃

i∈IG(U)

supp G i.

It is not hard to see that a polyhedron U is of full dimension if and
only if the set Carr G U intersects every component of Γ(G). As before
we may assume that the polyhedron U is of full dimension. If not,
we switch to the subspace span U and to the group G[U ] = G|span U .
Again, Γ(G[U ]) consists of those components of Γ(G) which intersect
Carr G U.

Obviously,

U◦ =
⋂

i∈IG(U)

i◦ =
⋂

i∈IG(U)

(conv i)◦,

and if we are looking for the extreme points of U◦ we have to determine
the extreme points of this intersection. The extreme points of each of
the sets (conv i)◦ are already described, they all are weights, i.e., their
supports consist of one vertex. Fix a Weyl chamber C. Since the set
U◦ is G-invariant, it is sufficient to find only extreme points of U◦ that
are in C. Obviously, C ∩Extr (U◦) ⊂ Extr (C ∩U◦), but these sets may
be different. Note that for every i the set C ∩ (conv i)◦ is in fact the
simplex

SC(i) = {
∑

j

λjωj : λj ≥ 0,
∑

j

λjmG(i, ωj) ≤ 1}.
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Here ωj, j = 1, 2, · · · , dim V, are the fundamental weights belonging
to C. Obviously, the origin is a vertex of SC(i), let us call this ver-
tex a trivial vertex. The non-trivial vertices of SC(i) are the vectors
ωj/mG(i, ωj), j = 1, 2, · · · , dim V. This simplex SC(i) is cut off the Weyl
chamber C by the affine hyperplane

ΠC(i) = {
∑

j

λjωj :
∑

j

λjmG(i, ωj) = 1}.

Theorem 5.1. Let G be a Coxeter group naturally acting in V, and let
U be a (G,n)-polytope.

(i) If y ∈ Extr (U◦) then supp G y consists of no more than n ver-
tices;

(ii) There cannot exist two distinct vectors in C ∩ Extr (U◦) with
coinciding supports consisting of exactly n vertices;

(iii) If y ∈ Extr (U◦) then Carr G U intersects every component of
Γ(G) \ supp G y.

Proof. Fix a Weyl chamber C and assume that y ∈ C. The point y ∈ C
is an extreme point of U◦, therefore it has to be an extreme point
of C ∩ (U◦), so it is the intersection of dim V linearly independent
boundary hyperplanes of C ∩ (U◦). All boundary hyperplanes of this
set are either the walls of C or the hyperplanes ΠC(i), i = 1, 2, . . . , n.
Therefore y belongs to no more than n affine hyperplanes ΠC(i), hence
it belongs to no less than dim V − n walls of C. So, y does not belong
to at most n walls, which proves (i).

To prove (ii), it suffices to note that if y has a support of n vertices
then it belongs to exactly dim V−n walls of C. Therefore, it must belong
to all of n affine hyperplanes ΠC(i). Since y is an extreme vector, these
dim V hyperplanes have only one common point. Therefore, any other
vector from Extr (C∩U◦), having the same support, must coincide with
this one.

To prove (iii), note that if xi, i = 1, 2, . . . , n, are representatives of n
pairwise distinct G-orbits constituting the set of extreme vectors of our
(G,n)-polytope, then the set {gxi : g ∈ G, i = 1, 2, . . . , n : 〈y, gxi〉 =
mG(y, xi) = 1} must span the whole space V. Therefore, by Lemma 2.9
for each i all vectors gxi on the face must belong to the same Stab G y-
orbit. So the orthogonal projections of these orbits to Vy must span
the whole space Vy. Therefore

⋃
i supp Gy

proj y xi must intersect every
component of Γ(Gy) = Γ(G) \ supp G y. Recalling Lemma 2.7, we see
that⋃

i

supp Gy
proj y xi =

⋃
i

(supp G xi \ supp G y) = Carr G U \ supp G y,

so the proof is completed. ¤
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The above result can be strengthened and complemented with a de-
scription of the codimension 1 face of U, associated with a given extreme
vector of U◦. For a convex G-invariant polyhedron U and for y ∈ V let

mG(U, y) = max
j∈IG(U)

mG(j, y),

IG(U, y) = {i ∈ IG(U) : mG(i, y) = mG(U, y)},
Carr G(U, y) =

⋃

i∈IG(U,y)

supp G i.

As before, V y denotes the intersection of all mirrors containing y. Recall
that U ∩ V y = proj y U.

Theorem 5.2. Let G be a Coxeter group naturally acting in V. For
every codimension 1 face Φ of a (G,n)-polytope U there exists a unique
subset γ ⊂ ver (G[U ]) and a unique vector y, supp G y = γ, such that

(i) card γ ≤ n,
(ii) y is a normal to a codimension 1 face of the polyhedron U ∩V y

in the subspace V y,
(iii) Carr G(U, y) intersects every component of Γ(G[U ]) \ γ,
(iv) let xi ∈ i be such that 〈xi, y〉 = mG(i, y). Then

Φ = conv
⋃

i∈IG(U,y)

Co Stab G y xi.

So, Φ is a (Stab G y, k)-polytope, where k ≤ card IG(U, y).
Moreover, for every γ ⊂ ver (G[U ]), y ∈ V, supp G y = γ, satisfying

(i) — (iii), the set Φ defined in (iv), is a codimension 1 face of U.

Note that if n = 1 then Carr G U = Carr G(U, y) for any y, so (iii)
is formulated in terms of Carr G U and γ only, and there always exists
a unique y satisfying (ii). So, in this case Theorem 5.2 reduces to
Theorem 3.3. This means that (i) and (iii) deliver a full description
of Extr (U◦) in terms of Carr G U and γ for n = NG(U) = 1. Such a
description is not possible for n ≥ 2. We present some counterexamples
in Theorem 5.10 below. Note that if NG(U) ≥ dim V, then condition
(i) in Theorem 5.1 is satisfied by any vector in V. We show that in
this case any vector from V can serve as a vector from Extr (U◦) for a
(G, dim V )-polytope U, see Theorem 5.10 below.

Let us now describe the elements of Extr (U◦) having the minimal
and maximal supports.

First, we describe all one-vertex supported elements of Extr (U◦) for
a G-invariant convex polytope U .

Corollary 5.3. Let U be a G-invariant convex polytope. Let π be
a vertex of Γ(G[U ]). The vector ω/mG(U, ω), π(ω) = π, belongs to
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Extr (U◦) if and only if the set Carr G(U, ω) intersects every component
of Γ(G[U ]) \ {π}.

Now let us describe the vectors from Extr (U◦) whose supports consist
of the maximal possible number of vertices, namely, of NG(U) vertices.

Corollary 5.4. Let U be a (G,n)-polytope, n ≤ dim V. Choose γ ⊂
ver (G[U ]) such that card γ = n. There exists a unique G-orbit i ∈
IG(U), supp G i = γ if and only if

(i) the linear system
∑
j∈γ

λjmG(i, ωj) = 1, i = 1, 2, . . . , n, i ∈ IG(U),

has a unique solution, and all entries of this solution are positive,
(ii) supp G U intersects every component of Γ(G[U ]) \ γ.

5.1. (G, 2)-polytopes. Let U be a (G, 2)-polytope. Then all vectors
from Extr (U◦) have supports consisting of one or two vertices of Γ(G).
It is easy to describe these supports in rather explicit geometric terms.
Let i± denote the two G-orbits constituting IG(U). For π ∈ ver (G[U ])
choose ω ∈ WG such that π(ω) = π, and let

µ(π) =
mG(i+, ω)

mG(i−, ω)
.

Since π ∈ ver (G[U ]), it cannot happen that the numerator and the
denominator of the fraction defining µ(π) are both zero, so 0 ≤ µ(π) ≤
∞. Note that µ(π) does not depend upon the choice of ω, π(ω) = π.

Consider the canonical partition of the set ver (G[U ]) into the
following three subsets:

I+ = {π ∈ ver (G[U ]) : µ(π) > 1},
I− = {π ∈ ver (G[U ]) : µ(π) < 1},
I0 = {π ∈ ver (G[U ]) : µ(π) = 1}.

Considering the geometry of the related lines, one can easily verify
that a linear system

λ0a00 + λ1a01 = 1

λ0a10 + λ1a11 = 1

with positive coefficients aij, 0 ≤ i, j,≤ 1, has a unique solution with
positive entries if and only if

(
a01

a11

− 1

)(
a00

a10

− 1

)
< 0.

The above considerations lead to the following result:
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Corollary 5.5. Let U be a (G, 2)-polytope. Consider the canonical
partition I+, I−, I0 of the set ver (G[U ]), associated with the two G-orbits
i± constituting IG(U).

Choose a vertex π ∈ Γ(G[U ]). There exists a vector z ∈ Extr (U◦)
such that supp G z = {π} if and only if one of the following conditions
is satisfied:

(i) if π ∈ I±, then supp G i± intersects every component of Γ(G[U ])\
{π},

(ii) if π ∈ I0, then Carr G U = supp G i+∪ supp G i− intersects every
component of Γ(G[U ]) \ {π},

Choose two distinct vertices π, κ in Γ(G[U ]). There exists a vector
z ∈ Extr (U◦) such that supp G z = {π, κ} if and only if both of the
following conditions are satisfied:

(iii) Carr G U intersects every component of Γ(G[U ]) \ {π, κ},
(iv) one of the vertices π, κ belongs to the set I+, the other belongs

to the set I−.
If (iii - iv) hold then z = g(λ0ω + λ1ρ), where g ∈ G, and ω, ρ are

fundamental weights (belonging to the same Weyl chamber) such that
supp G ω = {π}, supp G ρ = {κ}. Here (λ0, λ1) is the unique (positive)
solution of the linear system

λ0mG(i+, ω) + λ1mG(i+, ρ) = 1

λ0mG(i−, ω) + λ1mG(i−, ρ) = 1.

The above vectors z form an exhaustive list of elements of Extr (U◦).

5.2. An-invariant polytopes and spectra of Hermitian matri-
ces. It has been known for quite a long time that the geometry of
An-orbihedra is very important for many natural problems related to
the spectral theory of Hermitian operators. Recently there was a break-
through, due mostly to A.A. Klyachko, in an old problem of description
of the possible spectra of sums of Hermitian matrices with given spec-
tra (see [9, 12]). Here we present some simple remarks related to such
problems.

Let α = (α1, · · · , αn} ∈ Rn, let diag α denote the diagonal matrix
having α as its diagonal. So, diag is a real linear mapping from Rn to
the real linear space of Hermitian n× n matrices. Let

Orb U α = {u(diag α)u∗ : u ∈ U(n)}
be the set of Hermitian matrices, whose spectrum is {α1, · · · , αn}. Here
U(n) denotes the unitary group acting on Cn. For any Hermitian n×n
matrix A let Diag A denote the diagonal of A, viewed as a vector from
Rn. So, Diag is a real linear mapping from the real linear space of
Hermitian n × n matrices to Rn. Certainly, Diag (diag α) = α. To
simplify the formulations we restrict ourselves to Hermitian matrices
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with zero trace, the space of such n× n matrices is denoted by H0(n).
Note that iH0(n) is the Lie algebra of the Lie group U(n), and the action
of U(n) on H0(n) is adjoint action of a Lie group on its Lie algebra.
Also, let Vn−1 denote the (n−1)-dimensional subspace of Rn consisting
of vectors with the zero sum of coordinates. Obviously, if α ∈ Vn−1

then Orb U diag (α) ⊂ H0(n). For a matrix A ∈ H0(n) let Spec A =
{λ1, · · · , λn} ⊂ R denote its spectrum, let spec A denote the set of
vectors (λσ(1), · · · , λσ(n)) ∈ Vn−1, where σ runs over all permutations of
{1, 2, · · · , n}. So, spec A is an An−1-orbit. We treat spec as a mapping
from H0(n) to the space of An−1-orbits. The following result, due to I.
Schur and A. Horn (see [10]), establishes a beautiful connection between
An−1-orbihedra and spectra of Hermitian matrices with zero trace:

Theorem 5.6. Let α ∈ Vn−1. Then

Diag (Orb U diag (α)) = Co An−1 α.

In other words, for any A ∈ H0(n) Diag Orb U A is a convex polyhe-
dron and spec A is the set of its extreme vectors:

Extr (Diag Orb U A) = spec A.

Let α, β ∈ Vn−1. An important problem going back to H. Weyl is to
compute the set

spec (Orb U diag α + Orb U diag β).

After important contributions by H. Weyl, Ky Fan, V.B. Lidskii, H.
Wielandt, A. Horn, and others, this problem was recently solved by
A. Klyachko [12]. The ideas of this solution came from Representation
Theory and Algebraic Geometry. It should be noted that the connec-
tions of this problem with representation theory of Lie groups were
known for at least 50 years.

We present two simple results, using the ideas of the preceding sec-
tions.

Theorem 5.7. Let α, β ∈ Vn−1. Then

spec (conv Orb U diag α + conv Orb U diag β) = Co An−1(α
∗ + β∗).

Proof. The set spec (conv Orb U diag α + conv Orb U diag β) is convex
– one can verify this by a straightforward computation. Using the
definitions and the Schur-Horn Theorem, we obtain

spec (conv Orb U diag α + conv Orb U diag β)

⊂ Diag (conv Orb U diag α + conv Orb U diag β)

= conv (Diag (Orb U diag α) + Diag (Orb U diag β))

= conv (Co An−1 α + Co An−1 β)

= Co An−1 α + Co An−1 β = Co An−1(α
∗ + β∗).
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To prove the last equality, we compute the polar sets of both convex
sets and verify that they coincide:

(Co An−1 α + Co An−1 β)◦ = {z ∈ Vn−1 : ∀g, h ∈ An−1 〈z, gα + hβ〉 ≤ 1}

= {z ∈ Vn−1 : 〈z∗, α∗〉+ 〈z∗, β∗〉 ≤ 1}
= {z ∈ Vn−1 : ∀g ∈ An−1 〈z, g(α∗ + β∗)〉 ≤ 1}

= (Co An−1(α
∗ + β∗))◦.

On the other hand, vectors g(α∗+β∗), g ∈ An−1, (which are the extreme
vectors of Co An−1(α

∗ + β∗)) obviously belong to spec (Orb U diag α +
Orb U diag β). So, since we know that

spec (conv Orb U diag α + conv Orb U diag β)

is convex then the assertion follows. ¤

Let us reformulate the result choosing the following Weyl chamber
C = {x1 ≥ x2 ≥ · · · ≥ xn} ⊂ Vn−1 and letting x∗ = x∗(An−1, C). Note
that the related fundamental weights are the orthogonal projections of
the vectors (1, 1, · · · , 1, 0, · · · , 0) (k ones, 1 ≤ k ≤ n− 1) onto Vn−1.

Corollary 5.8. Let α, β ∈ Vn−1. Then

γ ∈ spec (conv Orb U diag α + conv Orb U diag β)

if and only if

∀k, k ≤ n− 1,
k∑

i=1

(γ∗)i ≤
k∑

i=1

(α∗)i +
k∑

i=1

(β∗)i.

Essentially repeating the considerations in the proof of the previous
Theorem, we arrive to the following result:

Theorem 5.9. Let α, β ∈ Vn−1. Then

spec (conv (Orb U diag α
⋃

Orb U diag β))

is the (An−1, 2)-polytope conv (Orb An−1 α
⋃

Orb An−1 β).

Using the description of the extreme vectors of polars of (G, 2)-
polytopes we can describe the vectors from

spec (conv (Orb U diag α
⋃

Orb U diag β)

in terms of a system of linear inequalities.
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5.3. (G, 2)-polytopes – some counterexamples.

Theorem 5.10. Let G be an irreducible Coxeter group.
(a) There exist (G, 2)-polytopes such that all elements from Extr (U◦)

have the same one-vertex support, provided dim V ≥ 3.
(b) If Γ(G) is not branching and dim V ≥ 4, then there exist two

distinct (G, 2)-polytopes U1, U2 such that Carr G U1 = Carr G U2, all el-
ements of Extr (U◦

1 ) have the same one-vertex support π, all elements
of Extr (U◦

2 ) have the same one-vertex support κ, but π 6= κ.
(c) For every z ∈ V such that supp G z = ver (G) there exists a

(G, dim V )-polytope U such that z ∈ Extr (U◦).

Proof. (a) If Γ(G) is not branching, then let ω be a non-extremal fun-
damental weight (i.e., the related vertex π = π(ω) is not one of the end
vertices π1, π2 of the Coxeter graph Γ(G)). Then

Extr (CoGω)◦ = Orb G
ω1

mG(ω, ω1)

⋃
Orb G

ω2

mG(ω, ω2)

where π(ωi) = πi, i = 1, 2, – this immediately follows from Theorem
3.2. Then U = (Co G ω)◦ is a (G, 2)-polytope, Carr G U = {π1, π2}, and

Extr (U◦) = Extr (Co G ω) = Orb G ω1.

So, all elements of Extr (U◦) have the same one-vertex support π(ω).
If Γ(G) is branching, choose π to be one of the three end vertices of
Γ(G).

(b) In the previous construction choose two distinct fundamental
weights ω, τ, associated to non-end vertices of the Coxeter graph. It is
possible since card ver (G) = dim V ≥ 4.

(c) Put U = (Co G z)◦. Obviously, Extr (U◦) = Extr (Co G z) =
Orb G z. On the other hand, according to Theorem 3.2,

Extr U = {ω/mG(ω, z) : supp G z intersects every component of

Γ(G) \ {π(ω)}} =
⋃

π(ω)∈ver (G)

Orb G ω/mG(ω, z)

so NG(U) = card ver (G) = dim V. ¤

6. Orbihedra for quasi-Coxeter groups

6.1. Quasi-Coxeter groups. Let us start with an important example:

Definition 6.1. Let V = Mn,m(R), the set of matrices having n columns
of m real entries each. Define Bn,m as the group of operators acting
on V by permuting the columns, permuting elements in each individual
column, and performing sign changes on any number of entries.
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Groups Bn,m naturally arise as symmetry groups for the so called
mixed norms: choose a Bn-invariant norm l : Rn → R+, and a
Bm-invariant norm L : Rm → R+, treat an element A ∈ Mn,m(R) as
a string (a1, a2, · · · , an) of n vectors from Rm, then define the mixed
norm (lL) as follows:

(lL)(A) = l(L(a1), L(a2), · · · , L(an)).

The unit balls of such norms are important examples of Bn,m-invariant
convex bodies.

Notably, Bn,m is not generated by reflections across hyperplanes, but
it does have a close relationship to the Coxeter group Bm. A refor-
mulation of the above definition makes this relationship more evident.
Specifically, Bn,m = Sn(Bm) where Sn(G) has the following definition.
Let Sn denote the group of permutations of the set {1, 2, · · · , n}.
Definition 6.2. Let G be a Coxeter group naturally acting on V . De-
fine

Sn(G) = Sn ×Gn = {σ × (
n∏

i=1

gi) : σ ∈ Sn, gi ∈ G, 1 ≤ i ≤ n}.

Group Sn(G) acts on V n as follows:

(σ × (
n∏

i=1

gi))(v1, v2, . . . , vn) = (g1vσ(1), g2vσ(2), . . . , gnvσ(n)).

In other terms, the action of Sn(G) on V n is induced by the natural
action of G on V.

Again, group Sn(G) is not generated by reflections across hyper-
planes, but it has a Coxeter subgroup Gn.

Now consider a more general situation: let K be a finite group of
operators acting on a real finite dimensional space V. Consider all re-
flections across hyperplanes contained in K. Let G = G(K) denote
the subgroup generated by all these reflections. Assume that G acts
effectively on V. Then G is called a Coxeter subgroup of K.

Let G\K = {Gk = {gk : g ∈ G} : k ∈ K} be the left homogeneous
space. For every x ∈ V we have

Orb K x =
⋃

Gk∈G\K
Orb G kx.

Therefore
Co K x = conv

⋃

Gk∈G\K
Co G kx.

So, every K-orbihedron is a convex G-invariant polyhedron, and IG(Co K x) ≤
card (G\K). The number card (G\K) = (K : G) is called the index of
the subgroup G in the group K.
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Consider a finite group K of operators acting on a real finite dimen-
sional space V containing a Coxeter subgroup (= an effectively acting
subgroup generated by reflections across hyperplanes) of index smaller
that dim V. We call such group K a quasi-Coxeter group.

The techniques presented in the previous sections allows to study the
convex structure of K-orbihedra for quasi-Coxeter groups K.

6.2. S2(G)-orbihedra. Consider the case K = S2(G), where G is an ir-
reducible Coxeter group naturally acting on V (irreducibility is actually
not very important, but this assumption simplifies some formulations).
This group contains an index 2 Coxeter subgroup G2, naturally acting
on V 2 :

(g0, g1)(v+, v−) = (g0v+, g1v−).

There is an obvious action of S2 on V 2 by permutations of the com-
ponents. Let

σ(v+, v−) = (v−, v+).

We call this operator σ a flip. Let v = (v+, v−) ∈ V 2. Consider a
S2(G)-orbihedron (which is also a (G2, 2)-polytope)

U = Co S2(G) v = conv (Co G2 v
⋃

Co G2 σ(v)).

Corollary 5.5 provides a complete description of the set Extr (U◦), but
we can simplify this description by incorporating flip symmetries of
Γ(G2) (to be defined in the next paragraph) and U.

The Coxeter graph Γ(G2) is the disjoint union of two copies Γ+, Γ−
of the connected graph Γ(G) :

Γ(G2) = Γ+

⊔
Γ−.

There is a natural automorphism of Γ(G2), interchanging Γ+ and Γ−.
Slightly abusing notation, we call this automorphism a flip. So, the
graph Γ(G2) is also flip-invariant. The carrier set Carr G2 U is also
flip-invariant. Therefore, it intersects both components of Γ(G2), so
G2[U ] = G2.

Let C be a Weyl chamber for G, then C2 = C×C is a Weyl chamber
for G2. Let ωj ∈ C ∩WG, 1 ≤ j ≤ dim V, be the fundamental weights.
Let πj, 1 ≤ j ≤ dim V, denote the related vertices of Γ(G). Then ω+

j =

(ωj, 0), ω−j = (0, ωj), 1 ≤ j ≤ dim V, are the fundamental weights of

G2, belonging to C2. Let πi
j, 1 ≤ j ≤ dim V, denote the related vertices

of Γi, i = ±, so we have π(ωi
j) = πi

j. We wish to describe the extreme

vectors of U◦ in terms of group G rather than in terms of group G2.
Let

νj =
mG(v+, ωj)

mG(v−, ωj)
, 1 ≤ j ≤ dim V.
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Since Γ(G) is connected then the numerator and the denominator of this
fraction can both vanish if and only if v+ = v− = 0, which is obviously
excluded. Consider the canonical partition of ver (G) associated with
vectors v+ and v− :

J+ = {πj ∈ ver (G) : νj > 1},
J− = {πj ∈ ver (G) : νj < 1},
J0 = {πj ∈ ver (G) : νj = 1}.

Let (Jk)
i = {πi

j ∈ ver (G2) : πj ∈ Jk}, i = ±, k = 0,±.
As before,

µ(πi
j) =

mG2(v, ωi
j)

mG2(σ(v), ωi
j)

, i = ±, 1 ≤ j ≤ dim V.

Obviously,

mG2(v, ωi
j) = mG(vi, ωj), mG2(σ(v), ωi

j) = mG(v−i, ωj), i = ±, 1 ≤ j ≤ dim V.

Therefore the following is true for the canonical partition of ver (G2),
associated with vectors v and σ(v) :

I+ = {π+
j ∈ ver (G2) : νj > 1}

⋃
{π−j ∈ ver (G2) : νj < 1}

= (J+)+
⋃

(J−)−,

I− = {π+
j ∈ ver (G2) : νj < 1}

⋃
{π−j ∈ ver (G2) : νj > 1}

= (J+)−
⋃

(J−)+,

I0 = {πi
j ∈ ver (G2) : νj = 1, i = ±} = (J0)

+
⋃

(J0)
−.

The flip maps the sets I+ and I− one onto another and leaves the set
I0 invariant.

Applying Corollary 5.5 we arrive to the following result:

Theorem 6.3. Let U = Co S2(G) v, where G is an irreducible Coxeter
group, naturally acting on space V, and v = (v+, v−) ∈ V 2. The set
Extr (U◦) can be described as follows:

1. Take πj ∈ Js, s = ±. There exists z ∈ Extr (U◦), supp G2 z =
πi

j, i = + or −, if and only if the following is true:
(i) supp G vs intersects every component of Γ(G)\{πj}, and v−s 6= 0.
In this case z = gωi

j/mG(vs, ωj), g ∈ G.

2. Take πj ∈ J0. There exists z ∈ Extr (U◦), supp G2 z = πi
j, i =

+ or −, if and only if the following is true:
(ii) supp G v+∪supp G v− intersects every component of Γ(G)\{πj}.
In this case z = gωi

j/mG(v0, ωj), g ∈ G.
3. Take πj, πk ∈ ver (G), j 6= k. There exists z ∈ Extr (U◦), supp G2 z =

{πi
j, π

i
k}, i = + or −, if and only if the following is true:



28 N. MCCARTHY, D. OGILVIE, N. ZOBIN, AND V. ZOBIN

(iii) supp G v+ ∪ supp G v− intersects every component of Γ(G) \
{πj, πk}.

(iv) one of the vertices πj, πk belongs to J+, the other - to J−.
In this case z = g(λ0ω

i
j + λ1ω

i
k), g ∈ G, i = ±, (λ0, λ1) is the unique

(positive) solution of the linear system

λ0mG(v+, ωj) + λ1mG(v+, ωk) = 1

λ0mG(v−, ωj) + λ1mG(v−, ωk) = 1.

4. Take πj, πk ∈ ver (G) (the case j = k is not excluded here). There
exists z ∈ Extr (U◦), supp G2 z = {πi

j, π
−i
k }, i = + or −, if and only if

the following is true:
(v) supp G v+∪supp G v− intersects every component of of the graphs

Γ(G) \ {πj} and Γ(G) \ {πk},
(vi) both of the vertices πj, πk belong to Ji, i = + or − .
In this case z = g(λ0ω

i
j +λ1ω

−i
k ), g ∈ G, i = ±, (λ0, λ1) is the unique

(positive) solution of the linear system

λ0mG(v+, ωj) + λ1mG(v−, ωk) = 1

λ0mG(v−, ωj) + λ1mG(v+, ωk) = 1.

The above is an exhaustive list of elements of Extr (Co S2(G) v)◦.

A less explicit form of this result for G = B2 was obtained in [21] by a
hard (non-computer) computation, based on an algorithm calculating
the extreme rays of a polyhedral cone defined by a system of linear
inequalities (this algorithm is known as the Chernikova’s algorithm, or
the Double Description Method).

These results have an application to the Operator Interpolation The-
ory in the spirit of [19, 18, 20], which we discuss in the next sections.

7. Operator Interpolation

Our initial interest in the convex geometry of orbihedra was moti-
vated by an approach to operator interpolation developed by the last
two authors, for a complete exposition see [18, 19]. Let us briefly de-
scribe the main features of this approach.

Let G ⊂ O(V ) be a subgroup of orthogonal operators on a real finite
dimensional Euclidean space V. We wish to describe the envelope of
G (denoted env (G)) — the set of linear operators on V transforming
every G-invariant convex closed set into itself:

env (G) = {T ∈ End V : TU ⊂ U for every closed convex G-invariant

U ⊂ V }.
Obviously, env (G) is a convex closed semigroup of linear operators,
containing the convex hull of the group G.
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A collection {Uα, α ∈ A} of G-invariant convex closed sets is called
G-sufficient if

T ∈ env (G) ⇐⇒ ∀α ∈ A TUα ⊂ Uα.

We would like to describe some natural G-sufficient collections. A col-
lection consisting of G-orbihedra is called a simple collection. A col-
lection consisting of polar sets of G-orbihedra is called a dual simple
collection.

Example (Calderon–Mityagin Theorem). Let G be the Coxeter
group Bn. It acts on Rn as follows:

(x1, x2, · · · , xn) 7→ (s1xσ(1), s2xσ(2), · · · , snxσ(n)),

where σ is a permutation of {1, 2, · · · , n}, and sk = ±1. Let

U1 = {(xk) ∈ Rn :
∑

k

|xk| ≤ 1},

U∞ = {(xk) ∈ Rn : max
k
|xk| ≤ 1}.

A finite dimensional version of the celebrated Calderon-Mityagin inter-
polation theorem (see [7, 16]) asserts that if a linear operator T : V → V
is such that TU1 ⊂ U1 and TU∞ ⊂ U∞ then TU ⊂ U for every closed
convex Bn-invariant U ⊂ V (in other words, the contraction prop-
erty of T with respect to U1 and U∞ can be interpolated to all closed
convex Bn-invariant bodies). In our terms this means that the col-
lection U1, U∞ is a (both simple and dual simple) Bn-sufficient collec-
tion. It was shown in [19] that this collection is actually the smallest
Bn-sufficient collection, more precisely, it is a subset of the Hausdorff
closure of any Bn-sufficient collection (up to scaling).

There is a natural duality between the spaces End V of linear oper-
ators in V and the tensor product space V ⊗ V :

(T,
∑

xi ⊗ yi) =
∑

〈Tyi, xi〉.
Therefore there is a natural notion of the polar set, in particular,

G◦ = {S ∈ V ⊗ V : ∀ g ∈ G(g, S) ≤ 1}.
Sufficient collections can be described in terms of the following sets

in V ⊗ V :

AG = {x⊗ y ∈ V ⊗ V : mG(x, y) ≤ 1} = G◦ ⋂
{rank 1 tensors},

KG = conv AG.

Since AG is obviously closed and V ⊗ V is finite dimensional, then KG

is closed. One can show (see [19]) that KG is bounded if and only if G
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acts irreducibly, which we assume henceforth. Let Extr KG denote the
set of extreme elements of KG. One can show that

Extr KG ⊂ AG.

Since KG is a compact convex set in a finite dimensional space then,
by the Krein–Milman Theorem and the Caratheodory Theorem,

KG = conv Extr KG.

Note that KG is invariant with respect to the following tensor flip:
x⊗ y → y ⊗ x. Therefore the set Extr KG is also flip-invariant.

For every set U ⊂ V let

S(U) = {x⊗ y ∈ V ⊗ V : x ∈ U, y ∈ U◦}.
Obviously, if U is convex and G-invariant then S(U) ⊂ AG. For any
x ⊗ y ∈ AG (i.e., such that mG(x, y) ≤ 1) we have x ⊗ y ∈ S(Co G x)
and x⊗ y ∈ S((Co G y)◦).

It is not hard to see that a collection (Uα : α ∈ A) of G-invariant
convex closed sets is G-sufficient if and only if

Extr KG ⊂
⋃
α∈A

S(Uα).

This observation leads to the following constructions: let

NG = {x ∈ V : ∃y ∈ V, x⊗ y ∈ Extr KG},
and let us consider the following simple canonical collection:

CG = {Co G x : x ∈ NG},
and the following dual simple canonical collection:

C◦G = {(Co G x)◦ : x ∈ NG}.
It is easy to see that each of the canonical collections is G-sufficient,
and each of them is minimal in some natural sense — see [19, 18].

7.1. Non-canonical sufficient collections. It is often very difficult
to compute the sets Extr KG and NG. Therefore it is interesting to find
larger sets and construct larger G-sufficient collections.

The set

KG = {x⊗ y ∈ V ⊗ V : x ∈ Extr (Co G y)◦, y ∈ Extr (Co G x)◦}
is a very natural set of this type, it is contained in AG and contains
Extr KG (in fact, we have no examples of groups with Extr KG 6= KG,
though believe that such examples do exist). Let

N̂G = {x ∈ V : ∃y ∈ V, x⊗ y ∈ KG},
and we arrive to the quasi-canonical G-sufficient collections

ĈG = {Co G x : x ∈ N̂G}
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and
Ĉ◦G = {(Co G x)◦ : x ∈ N̂G}.

Let us construct several other G-sufficient collections. Let N0(G) =
V, and let

Ns+1(G) =
⋃
{Extr (Co G z)◦ : z ∈

⋃

w∈Ns(G)

Extr (Co G w)◦}.

It is not hard to show that

V = N0(G) ⊃ N1(G) ⊃ N2(G) ⊃ · · · ⊃ N̂G ⊃ NG.

Let
Cs(G) = {Co G x : x ∈ Ns(G)}.

Obviously,

C1(G) ⊃ C2(G) ⊃ · · · ⊃ ĈG ⊃ CG.

Therefore, all these collections are G-sufficient (but not minimal, if
different from CG). The actual construction of these collection heavily
depends upon the knowledge of the convex structure of G-orbihedra.
This was our initial motivation for the study of these problems.

As it was shown in [19], the equality C1(G) = CG is equivalent to
the fact that “interpolation in the canonical collection is described by
the real method”, see [19] for details. Such assertions are important in
Operator Interpolation. It actually means that there exist very simple
decompositions of elements of AG into convex combinations of elements
of Extr KG, and all convex G-invariant bodies can be obtained from the
bodies of the canonical collection by rather simple constructions (by the
so called real method). In particular, in this case one may interpolate
not only linear operators but also many non-linear ones.

7.2. Canonical collections for Coxeter groups. If G is an irre-
ducible Coxeter group then the set Extr KG was explicitly computed
in terms of weights (see [19]):

Extr KG

= { ω ⊗ τ

mG(ω, τ)
: ω, τ ∈ WG, π(ω), π(τ) are distinct end vertices of Γ(G)}.

Elements of Extr KG are called Birkhoff’s tensors — see [6, 15] for
an explanation how the Birkhoff’s tensors are related to the Birkhoff’s
description ([4]) of the extreme points of the set of doubly stochastic
matrices. So, for every irreducible Coxeter group the set Extr (env G)◦

is explicitly computed. In fact conv G = env G if the Coxeter graph
Γ(G) is not branching (this is proven in [6, 15] for all irreducible Cox-
eter groups with non-branching graphs with the only exception of the
group H4 for which this assertion is still a conjecture). As for the case
when Γ(G) is branching, it was shown in [15] that conv G 6= env G.
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These results were recently applied in [13] to a description of linear
isomorphisms of the convex hulls of Coxeter groups.

Thus in the case of an irreducible Coxeter group we have

NG = {ω ∈ WG : π(ω) is an end vertex of Γ(G)}.
Also, one can show that C1 = CG for all irreducible Coxeter groups,
so the interpolation here is “described by the real method” — see [7]
for G = Bn (even in the infinite dimensional setting), and [19] for all
other irreducible Coxeter groups. Moreover, in this case the canonical
collections have some additional nice extremal properties — see [18, 19].

In the case of G = Bn both canonical collections coincide with the
collection U1, U∞ described above.

7.3. Sufficient collections for non-Coxeter groups. All above no-
tions and constructions may be generalized to the case when G is a
bounded semigroup of operators on V — see [20]. In particular, we
may consider the semigroup of operators contracting every mixed norm
on V = Rn×m. It is possible to compute the canonical collections for
this semigroup, see [18]. As it was mentioned before, the mixed norms
are Bn,m-invariant. Not all Bn,m-invariant norms are mixed norms —
one can present counterexamples. The group Bn,m is not a Coxeter
group, and our initial goal was to construct canonical (or, at least,
quasi-canonical) collections for this group. A calculation of the quasi-
canonical collections for G = B2,2 was carried out in [21]. It was based
on the calculation of the extreme vectors of the polar sets of B2,2-
orbihedra. Since we now have a rather detailed description of these
vectors for groups S2(G), we can calculate quasi-canonical and even
canonical collections for these groups. This calculation is rather lengthy
and we plan to discuss it in a separate publication.
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