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Abstract. We consider the space of functions with bounded (k + 1)-th derivatives
in a general domain in Rn. Is every such function extendible to a function of the
same class defined on the whole Rn? H.Whitney showed that the equivalence of the
intrinsic (=geodesic) metric in this domain to the Euclidean one is sufficient for
such extendability. There was an old conjecture (going back to H.Whitney) that
this equivalence is also necessary for extendability. We disprove this conjecture and
construct examples of domains in R2 such that the above extendability holds but the
analogous property for smaller k fails. Our study is based on a duality approach.

Introduction

Let Ω be a bounded connected open set in Rn. Consider the following Sobolev
function space (see, e.g., [14, ch.V, §6.2] ):

W k+1
∞ (Ω) = {f ∈ Ck(Ω) : ∀α ∈ Zn

+, |α| = k + 1, f (α) ∈ L∞(Ω)}

Here, as usually, |α| = ∑n
i=1 αi for α = (α1, . . . , αn) ∈ Zn

+, f (α) denotes the corre-
sponding (distributional) partial derivative, Ck(Ω) denotes the space of k times con-
tinuously differentiable functions, L∞(Ω) denotes the space of essentially bounded
functions on Ω. Let W k+1

∞ (Rn)|Ω denote the space of restrictions to Ω of functions
from W k+1

∞ (Rn). Obviously,

W k+1
∞ (Rn)|Ω ⊂ W k+1

∞ (Ω)

One can easily present examples of domains Ω for which the inclusion is proper.
We are studying the following

Problem. Under what conditions on Ω

(EPk,l) W l+1
∞ (Rn)|Ω ⊃ W k+1

∞ (Ω)?

In particular,

(EPk,k) W k+1
∞ (Rn)|Ω = W k+1

∞ (Ω)?
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(EPk,0) W 1
∞(Rn)|Ω ⊃ W k+1

∞ (Ω)?

If Ω satisfies (EPk,l) we write: Ω ∈ (EPk,l). In his remarkable work [16] Hassler
Whitney gave a description of functions from W k+1

∞ (Rn)|Ω in terms of their behavior
on Ω (see Theorem 6 below). As a corollary of this description, he formulated [15] a
simple sufficient condition for Ω to yield (EPk,k). Let us first introduce the following
notation: For x, y ∈ Ω let

dΩ(x, y) = infimum of lengths of polygonal paths in Ω joining x and y

Obviously, dΩ(x, y) ≥ dRn(x, y). dΩ is called the intrinsic (or geodesic) metric
in Ω. Consider the following geometric condition on Ω :

(W) sup
x,y∈Ω

x 6=y

dΩ(x, y)
dRn(x, y)

< ∞

The sets Ω, satisfying (W), are called Whitney-regular (see, e.g., [8]).

Proposition 1. (H. Whitney [15]) (W) implies (EPk,k), k = 0, 1, . . . .

One can easily show that the converse holds for k = 0 (a stronger result is
contained in [8]):

Proposition 2. (EP0,0) implies (W).

Proof. Fix x ∈ Ω, consider the function f(y) = dΩ(x, y). Check that f ∈ W 1
∞(Ω)

and
sup
z∈Ω
|α|=1

|f (α)(z)| = 1

If Ω ∈ (EP0,0), then f is extendible to f̃ ∈ W 1
∞(Rn) and the Open Mapping

Theorem guarantees that one can choose f̃ such that

sup
z∈Rn

|α|=1

|f̃ (α)(z)| ≤ C sup
z∈Ω
|α|=1

|f (α)(z)| = C.

So,

dΩ(x, y) = |f(y)− f(x)| = |f̃(y)− f̃(x)| ≤ dRn(x, y) max
z∈Rn

|α|=1

|f̃ (α)(z)| ≤ C dRn(x, y).¥

There was a long standing Conjecture (usually called the Whitney Conjec-
ture):

for any k = 1, 2, . . . , (EPk,k) implies (W ).

It was shown that this is really true, provided Ω is a simply connected domain in
R2. To my best knowledge, the first proof was found by myself and is contained
in my PhD thesis (Voronezh State University, USSR, 1975), but it was never pub-
lished. V.N. Konovalov in 1984 published an independent proof of this result ([11]).
Recently I proved the following
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Theorem 3. If Ω is a finitely connected bounded domain in R2, then for any fixed
k = 0, 1, . . . , (EPk,k) implies (W).

The proof will be published in a separate paper.

The main result of the present paper is the following Theorem, showing, in
particular, the failure of the Whitney Conjecture for Rn, n ≥ 2.

Main Theorem. For any k ≥ 1 there exists a bounded connected domain Ω ⊂ R2

such that
W k+1
∞ (Ω) = W k+1

∞ (R2)|Ω
but

W k
∞(Ω) 6⊂ W 1

∞(R2)|Ω.

In our notations the assertion of the Main Theorem is: for n = 2

(EPk,k)\(EPk−1,0) 6= ∅.
In particular, the domain Ω does not belong to (EP0,0), so (W) fails and Ω delivers
a counterexample to the Whitney Conjecture. In fact, we show more, namely, we
prove that

k⋂

l=1

W l
∞(Ω) 6⊂ L∞(Ω).

Certainly, the Main Theorem implies that such domains exist in any greater dimen-
sion. For n = 2 this domain is necessarily infinitely connected, due to Theorem 3.
For n ≥ 3 this domain may be chosen to be a topological ball. We are dealing only
with the Sobolev spaces W k

∞(Ω). Certainly, the problems of extension arise in other
classes of functions, including general Sobolev spaces W k

p (Ω), Lipschitz spaces, Zyg-
mund spaces, nonquasianalytic classes (see, e.g., [1–4, 6, 7, 9, 10, 13, 14]). Each time
there arises a problem of description of domains allowing extendability of functions
with preservation of class. It is interesting to note that that there appear versions
of the condition (W), proving to be necessary and (or) sufficient for various types
of extendability. For example, consider the Sobolev spaces W k

p . A.P. Calderón [4]
showed that W k

p (Ω) = W k
p (Rn)|Ω for any k and p, 1 < p < ∞, provided ∂Ω is

Lipschitz. E.M. Stein extended this result to cover the cases p = 1,∞ (see [14]).
Finally, P.W. Jones [9] showed that this result holds for so-called (ε − δ)-domains
(this means, roughly speaking, that any two points may be connected by a not very
long and not very thin tube in Ω) and proved that this result is final: in the case of
bounded finitely connected planar domains the (ε − δ)-condition is also necessary
for the equality

W 1
2 (Ω) = W 1

2 (R2)|Ω
(for earlier results, concerning simply connected domains, see [6, 7]). V.G. Maz’ja
(see [13]) gave an example of a simply connected planar domain not satisfying the
(ε− δ)-condition but such that

W 1
p (Ω) = W 1

p (R2)|Ω for p 6= 2.

I don’t know whether the (ε− δ)-condition is necessary for the equality

W 2
2 (Ω) = W 2

2 (R2)|Ω.
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As it is shown in the present paper for p = ∞, the geometric conditions of ex-
tendability for k = 1 and for greater k do not coincide. Analogues of Whitney’s
theorem were proved for Lp-spaces (see [10]), for nonquasianalytic classes (see [1]).
It would be very interesting to apply these results to obtain geometric conditions
of extendability for these cases. The paper is organized as follows: in §1 we present
a reduction of the problem, based on duality principles, in §2 we construct the
domain Ω, basing on postulated properties of special domains, called labyrinths,
in §3 we present a construction of labyrinths – the main building blocks of the
domain Ω ∈ (EPk,k)\(EPk−1,0). Acknowledgments. I am deeply grateful to
Evsey Dyn’kin and Yoram Sagher for very stimulating and helpful discussions and
remarks. I am greatly indebted to Charles Fefferman for important remarks. I
appreciate very much numerous valuable discussions with Yu.A. Brudnyi, P. Kuch-
ment, V. Lin and P. Shvartsman, in particular, I am grateful to Yu.A. Brudnyi for
interesting comments and references. I am very thankful to Veronica Zobin for help
and support.

§1. Duality

It is well known (see, e.g., [14, ch.V, §6.2, ch.VI, §2.3]) that W k+1
∞ (Rn) is the

space of Ck-functions whose derivatives of order k yield the Lipschitz condition.
This is equally true for convex domains and therefore we obtain the following de-
scription of the space W k+1

∞ (Ω) (see, e.g., [12, Ch.1]): For x, y ∈ Ω let

[xy] = {(1− λ)x + λy : 0 ≤ λ ≤ 1}

be the straight line segment joining x and y.

Proposition 4.

W k+1
∞ (Ω) = {f ∈ Ck(Ω) : ∃C, ∀x, y, [xy] ⊂ Ω, ∀z ∈ Rn,

|
∑

|α|≤k

f (α)(x)
(z − x)α

α!
− f (α)(y)

(z − y)α

α!
| ≤ C

∫

[xy]

|z − w|k d|w|}.

Let f (p)(x) denote the p-th Frechèt derivative of f at the point x ∈ Ω, i.e., f (p)(x)
is a symmetric p-linear form on Rn. So, f (p) belongs to the space F(Ω, SympRn)
of functions on Ω with values in the space SympRn of symmetric p-linear forms on
Rn. The space SympRn is in a natural duality with the space (Rn)¯p of symmetric
tensors. If a ∈ Rn, then a⊗p ∈ (Rn)¯p, and

< f (p)(x), a⊗p >: = f (p)(x) (a, . . . , a)︸ ︷︷ ︸
p times

So, we may assert that

W k+1
∞ (Ω) = {f ∈ Ck(Ω) : ∃C, ∀x, y, [xy] ⊂ Ω, ∀z ∈ Rn,

|
k∑

p=0

< f (p)(x),
(z − x)⊗p

p!
> − < f (p)(y),

(z − y)⊗p

p!
> | ≤ C

∫

[xy]

|z − w|kd|w|}.
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Consider the following (obviously injective) mapping:

jk : W k+1
∞ (Ω) → F(Ω,

k⊕
p=0

SympRn)

(jkf)(x) = (f(x), f ′(x), . . . , f (k)(x))

We want to describe the image jk(W k+1
∞ (Ω)) (see, e.g., [12, Ch.1, 14, ch.VI, §2.3].)

Proposition 5.
jk(W k+1

∞ (Ω)) =

= {F = (f0, f1, . . . , fk) ∈ F(Ω,

k⊕
p=0

SympRn) : ∃C, ∀x, y, [xy] ⊂ Ω, ∀z ∈ Rn,

|
k∑

p=0

< fp(x),
(z − x)⊗p

p!
> − < fp(y),

(z − y)⊗p

p!
> | ≤ C

∫

[xy]

|z − w|kd|w|}

Now let us introduce the following linear space:

M(Ω,

k∏
p=0

(Rn)¯p) = {
∑

i∈I

µi ⊗ δxi : µi ∈
k∏

p=0

(Rn)¯p, xi ∈ Ω, |I| < ∞}

(δx is the δ-measure supported at the point x). We treat elements ofM(Ω,
∏k

p=0(Rn)¯p)

as finitely supported measures on Ω taking values in
∏k

p=0(Rn)¯p. The spaces

M(Ω,
∏k

p=1(Rn)¯p) and F(Ω,
⊕k

p=0 SympRn) are in a natural duality

< F,
∑

i∈I

µi ⊗ δxi > =
∑

i∈I

< F (xi), µi > .

This is a nondegenerate bilinear form and one can easily see that F(Ω,
⊕k

p=0 Symp(Rn))

is naturally identified with the space of all linear functionals on the spaceM(Ω,
∏k

p=0(Rn)¯p).
Let x ∈ Ω, a ∈ Rn. Consider the following element:

mk(a; x) = (1, a,
a⊗2

2!
, . . . ,

a⊗k

k!
)⊗ δx ∈M(Ω,

k∏
p=0

(Rn)¯p).

Then we may write

jk(W k+1
∞ (Ω)) = {F ∈ F(Ω,

k⊕
p=0

SympRn) : ∃C, ∀x, y, [xy] ⊂ Ω, ∀z ∈ Rn,

| < F, mk(z − x;x)−mk(z − y; y) > | ≤ C

∫

[xy]

|z − w|kd|w|}.
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Consider the following subspace of M(Ω,
∏k

p=0(R)¯p) :

M∞
k+1(Ω) = span {mk(z − x; x)−mk(z − y; y) : x, y ∈ Ω, z ∈ Rn}

For µ ∈ M∞
k+1(Ω) put

‖µ‖Ωk+1 = inf{
∑

|λi|
∫

[xiyi]

|zi − w|kd|w| :

µ =
∑

i

λi[mk(zi − xi;xi)−mk(zi − yi; yi)], [xiyi] ⊂ Ω, zi ∈ Rn}

Then we may write:
jk(W k+1

∞ (Ω)) =

= {F ∈ F(Ω,

k⊕
p=0

SympRn) : ∃C, ∀µ ∈ M∞
k+1(Ω), | < F, µ > | ≤ C‖µ‖Ωk+1}

This means that jk(W k+1
∞ (Ω))/[M∞

k+1(Ω)]⊥ is naturally identified with the Ba-
nach dual space to the normed space M∞

k+1(Ω). One can easily prove that jkf ∈
[M∞

k+1(Ω)]⊥ if and only if f is a polynomial of degree ≤ k. So jk establishes an
isomorphism between the spaces W k+1

∞ (Ω)/Pol≤k and [M∞
k+1(Ω)]′. It may be inter-

esting to note that the space
∏∞

p=0(R2)¯p is the Fock space – the quantum state

space for a system of particles, m∞(a; x) = exp⊗a⊗ δx, where exp⊗a =
∑∞

p=0
a⊗p

p!

belongs to the Fock space. Now we present a version of the Whitney Theorem,
describing the space W k+1

∞ (Rn)|Ω. The version is essentially due to G. Glaeser [5],
see [12, Ch.1].

Theorem 6. (H. Whitney)

jk(W k+1
∞ (Rn)|Ω) = {F ∈ F(Ω,

k⊕
p=0

SympRn) : ∃C, ∀x, y ∈ Ω, ∀z ∈ Rn,

| < F, mk(z − x;x)−mk(z − y; y) > | ≤ C

∫

[xy]

|z − w|kd|w|}.

HERE WE DO NOT ASSUME, THAT [xy] ⊂ Ω. Comparing jk(W k+1
∞ (Ω)) and

jk(W k+1
∞ (Rn)|Ω), we deduce the following

Theorem 7. W k+1
∞ (Ω) = W k+1

∞ (Rn)|Ω if and only if

∃C, ∀x, y ∈ Ω, ∀z ∈ Rn,

‖mk(z − x; x)−mk(z − y; y)‖Ωk+1 ≤ C

∫

[xy]

|z − w|kd|w|.

Comparing jk−1(W k
∞(Ω)) and j0(W 1

∞(Rn)|Ω) we deduce the following
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Theorem 8. W k
∞(Ω) ⊂ W 1

∞(Rn)|Ω if and only if

∃C, ∀x, y ∈ Ω,

‖mk−1(y − x;x)−mk−1(0; y)‖Ωk ≤ C|x− y|.

These theorems give geometric conditions on Ω, necessary and sufficient for the
belongings Ω ∈ (EPk,k) and Ω ∈ (EPk−1,0), respectively. So, wishing to construct
Ω ∈ (EPk,k)\(EPk−1,0), we must ensure that

∃C, ∀x, y ∈ Ω, ∀z ∈ Rn,

‖mk(z − x; x)−mk(z − y; y)‖Ωk+1 ≤ C

∫

[xy]

|z − w|kd|w|,

but there must exist xi, yi ∈ Ω such that

‖mk−1(yi − xi; xi)−mk−1(0; yi)‖Ωk > i|xi − yi|.

In this paper we prefer to give an explicit construction of a function

Ψ ∈ (
k⋂

l=1

W l
∞(Ω))\L∞(Ω)

instead of using Theorem 8.

§2. Construction of a special domain Ω

We are going to construct a special bounded domain Ω in R2. It will be con-
structed as a union of an increasing uniformly bounded sequence of domains Ωn

with real analytic boundaries ∂Ωn, Ω̄n ⊂ Ωn+1, n = 1, 2, . . . . We put Ω0 = {a}.
Choose a countable dense subset Z ⊂ R2, and represent it as a union of an increas-
ing sequence of finite sets:

Z =
∞⋃

n=0

Zn, Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . .

We shall inductively construct finite sets T0 ⊂ T1 ⊂ T2 ⊂ . . . , such that Tn will be
a 1

n -net in Ω̄n. and therefore
⋃∞

n=1 Tn will be dense in Ω. Every Ω̄n will be equipped
with a smooth function Ψn, such that

Ψ(α)
n (a) = 0 for |α| < k,

(Ωn, 1) sup
x∈Ω̄n

|α|=l

|Ψ(α)
n (x)| ≤ hl(1− 1

n + 1
), 1 ≤ l ≤ k, hk = 1.

These functions will be extensions of each other:

(Ωn, 2) Ψn|Ω̄n−1
= Ψn−1, n = 2, . . . ,
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(Ωn, 3) ∃xn ∈ Ω̄n : Ψn(xn) ≥ n.

So the function Ψ on Ω, defined as

Ψ|Ωn
= Ψn,

will belong to
⋂k

l=1 W l
∞(Ω), will yield the equalities Ψ(α)(a) = 0 (|α| < k) but will

be unbounded, so
k⋂

l=1

W l
∞(Ω) 6⊂ L∞(Ω).

The sets Ω̄n will have the following property:

for any x, y ∈ Tn−1 and for any z ∈ Zn−1

(Ωn, 4) ‖mk(z − x; x)−mk(z − y; y)‖M∞
k+1(Ωn) ≤ C(k)

∫

[xy]

|z − w|kd|w|.

So for any x, y ∈ ⋃∞
k=0 Tk and for any z ∈ Z

‖mk(z − x;x)−mk(z − y; y)‖M∞
k+1(Ω) ≤ C(k)

∫

[xy]

|z − w|kd|w|.

and, recalling that Z is dense in R2 and
⋃∞

k=0 Tk is dense in Ω, we see that this
estimate holds for any x, y ∈ Ω and for any z ∈ R2. Keeping in mind Theorem 7,
we easily conclude that

W k+1
∞ (R2)|Ω = W k+1

∞ (Ω).

The main building blocks for our inductive construction of Ωn’s are special sets,
called labyrinths. Given two points a, b ∈ R2, a vector z ∈ R2 and a number N,
we construct a labyrinth La,b,N (z). (i) La,b,N (z) is the closure of a domain with

a real analytic boundary, (ii) La,b,N (z) ⊂
{

t ∈ R2 : |t− a+b
2 | ≤ |a−b|

2

}
, (iii) a, b ∈

∂La,b,N (z) (iv) ‖mk(z−a; a)−mk(z− b; b)‖M∞
k+1(La,b,N (z)) ≤ C(k)

∫
[ab]

|z−w|kd|w|
(v) there exists a function Ψa,b,z,N ∈ C∞(La,b,N (z)) such that: (*) Ψa,b,z,N is
identically zero in a neighborhood of a; (**) Ψa,b,z,N is constant in a neighborhood
of b; Ψa,b,z,N (b) = N. (***) sup

x∈La,b,N (z)

|α|=l

|Ψ(α)
a,b,z,N (x)| ≤ hl, 1 ≤ l ≤ k, hk = 1.

Assuming that we are able to construct the labyrinths La,b,N (z) and the functions
Ψa,b,z,N , we are presenting an inductive procedure of constructing Ωn’s. Step 1.
We may assume that the set Z0 consists of one vector z0. Fix an open circle C0 of
radius 1, centered at a. All Ωn will be subsets of C0. Take an arbitrary point b ∈ C0,
|a− b| = 1

2 , and let Ω1 = La,b,2(z0). Take T0 = {a, b}, Ψ1 = 1
2Ψa,b,z0,2, x1 = b. The

properties (Ω1, 1 − 4) are easily verified. Step n. Now assume that Ωn is already
constructed together with the function Ψn and the set Tn−1 ⊂ Ω̄n−1 ⊂ Ωn. Choose
a finite 1

n -net Sn ⊂ Ω̄n and let

Tn = Tn−1

⋃
Sn.
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Consider the set
ωn+1 = Ω̄n

⋃
(

⋃

xi,xj∈Tn

[xixj ])

Then consider the function Ψn which is assumed to be already constructed on Ω̄n.
Ψn ∈ C∞(Ω̄n), ∂Ωn is real analytic, so Ψn may be extended to a C∞-function Ψ̃n

on R2. Since
sup

x∈Ω̄n

|α|=l

|Ψ(α)
n (x)| ≤ hl(1− 1

n
), 1 ≤ l ≤ k,

there exists a neighborhood Ω̃n ⊃ Ω̄n (we may assume that ∂Ω̃n is real analytic)
such that

sup
x∈Ω̃n

|α|=l

|Ψ̃(α)
n (x)| ≤ hl

(
1− 1

n
+

1
4

(
1
n
− 1

n + 1

))
, 1 ≤ l ≤ k.

Consider (ωn+1∩ Ω̃n)\Ωn. Since ∂Ωn and ∂Ω̃ are real analytic, this set consists of a
finite number of straight line segments, subdivided into subsegments by intersection
points. Consider only those subsegments, one end of which belongs to ∂Ωn (if
both ends belong to ∂Ωn, we split this subsegment into two by the middle point
and consider the resulting two subsegments). Choose a point in each of these
subsegments and surround it by a small disk so that these disks are pairwise disjoint
and are contained in Ω̃n\Ω̄n. Let us erase the parts of the subsegments contained
inside the constructed disks. We replace them by the constructions shown at Fig.1.

Fig. 1

The number of ”teeth” is equal to |Zn|. The ends of the ”teeth”, which belong to
the connected component of Ωn, are called ap (p = 1, 2, . . . , |Zn|), the remaining
ends are called bp (p = 1, 2, . . . , |Zn|) – ap and bp are corresponding to each other.
Consider the labyrinths

Lap,bp,An(zp) (zp ∈ Zn)

and insert them between ap and bp (p = 1, 2, . . . , |Zn|). (Certainly, we assume
that the disks whose diameters are the segments [apbp] are pairwise disjoint.) The
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numbers An are chosen as follows: let Mn = sup
x∈Ω̃n

|Ψ̃n(x)|, then

An = Mn · l(n)
[
1
2

(
1
n
− 1

n + 1

)]−1

,

where l(n) will be presented further. Put

ω̆n+1 = (ωn+1\(erased disks))
⋃

( inserted constructions)
⋃

( inserted labyrinths).

Now consider the functions 1
2 ( 1

n − 1
n+1 )Ψap,bp,zp,An

on Lap,bp,An
(zp) and extend

them to the inserted constructions by zero beyond ap, and by the constant

1
2
(
1
n
− 1

n + 1
)An = Mn · l(n)

beyond bp. Then these functions are further extended to Ω̄n by zero. We get the
function φ0, defined on ω̆n+1. There is another function – Ψ̃n(x) – defined on Ω̃n;
Ω̃n contains the set ω̆n+1 where φ0 is defined. Consider the function µn = Ψ̃n +φ0.
It is well defined on ω̆n+1, it coincides with Ψn on Ω̄n,

sup
x∈ω̆n+1

|α|=l

|µ(α)
n (x)| = sup

x∈ω̆n+1

|α|=l

|(Ψ̃n + φ0)(α)(x)| ≤

≤ hl

[
1
4

(
1
n
− 1

n + 1

)
+ 1− 1

n

]
+

hl

2

(
1
n
− 1

n + 1

)
= hl

(
1− 1

n
+

3
4

(
1
n
− 1

n + 1

))
.

Let us estimate µn beyond the points bi :

µn(x) = Ψ̃n(x) + φ0(x) ≥ φ0(x)−Mn =

= l(n) ·Mn −Mn = (l(n)− 1)Mn ≥ (l(n)− 1)n.

We consider the function
Ψn+1(x) = χn(µn(x))

where χn is constructed as follows:

χ′n(t) =
{

1, t ≤ max(n + 1,Mn)
0, t ≥ Mn(l(n)− 1)

0 ≤ χ′n(t) ≤ 1, χn(0) = 0.

So

χn(t) =
{

t, t ≤ max(n + 1, Mn)
Bn, t ≥ Mn(l(n)− 1)

Bn > max(n + 1,Mn). We may assume that

|χ(s)
n (t)| = |(χ′n)(s−1)(t)| ≤ A

[(l(n)− 1)Mn −max(n + 1,Mn)]s−1
, s = 2, . . . , k
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(Note that we may choose

χn(t) = χ̃

(
t−max(n + 1,Mn)

(l(n)− 1)Mn −max(n + 1,Mn)

)

where χ̃ is a fixed function such that

χ̃′(s) =
{

1, s ≤ 0
0, s ≥ 1,

0 ≤ χ̃′(s) ≤ 1, χ(0) = 0).

So Ψn+1|Ωn = Ψn, Ψn+1 = Bn > max(n + 1,Mn) beyond the points bi,

sup
x∈ω̆n+1

|α|=k

|Ψ(α)
n+1(x)| = sup

x∈ω̆n+1

|α|=k

|(χn(µn(x)))(α)(x)|.

Choosing l(n) to be sufficiently large, we may make all derivatives χ
(s)
n (s =

2, 3, . . . , k) very small, so

sup
x∈ω̆n+1

|α|=l

|(χn(µn(x)))(α)(x)| ≤

≤ sup
x∈ω̆n+1

|α|=l

|χ′n(µn(x))µ(α)
n (x)|+ 1

8

(
1
n
− 1

n + 1

)
hl ≤

≤ hl

[
1− 1

n
+

3
4

(
1
n
− 1

n + 1

)]
+

1
8

(
1
n
− 1

n + 1

)
hl = hl

[
1− 1

n
+

7
8

(
1
n
− 1

n + 1

)]
.

So

sup
x∈ω̆n+1

|α|=l

|Ψ(α)
n+1(x)| ≤ hl

[
1− 1

n
+

7
8

(
1
n
− 1

n + 1

)]
.

The function may be obviously extended to the remaining part of ωn+1 (beyond the
points bi) just by putting Ψn+1 there to be constant Bn ≥ max(n+1,Mn) ≥ n+1.
This function is obviously extendible to a narrow neighborhood of ω̆n+1 ∪ ωn+1.
We may assume this neighborhood to have a real analytic boundary and we put
Ω̄n+1 to be the closure of this neighborhood. Choosing the neighborhood Ωn+1 to
be sufficiently narrow we may ensure that the extended function (we still denote it
Ψn+1) satisfies the estimate

sup
x∈Ωn+1

|α|=l

|Ψ(α)
n+1(x)| ≤ hl

[
1− 1

n
+

7
8

(
1
n
− 1

n + 1

)]
+

1
8

(
1
n
− 1

n + 1

)
hl = hl

[
1− 1

n + 1

]
.

So we have constructed: a domain Ωn+1 with a real analytic boundary, Ωn+1 ⊃ Ω̄n,
Ωn+1 is contained in the circle C0, a finite 1

n -net Tn ⊂ Ω̄n, Tn ⊃ Tn−1, a smooth
function Ψn+1 on Ω̄n+1, such that

Ψn+1|Ω̄n
= Ψn
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sup
x∈Ω̄n+1

|α|=l

|Ψ(α)
n+1(x)| ≤ hl

[
1− 1

n + 1

]
, 1 ≤ l ≤ k,

Ψn+1(bi) = Bn ≥ n + 1.

So the properties (Ωn+1, 1 − 3) are checked. Let us check the property (Ωn+1,4),
showing that

‖mk(z − x;x)−mk(z − y; y)‖M∞
k+1(Ωn+1) ≤ C(k)

∫

[xy]

|z − w|kd|w|

for any z ∈ Zn and for any x, y ∈ Tn. Really, [xy] ⊂ ωn+1. If [xy] ⊂ Ω̄n, then
[xy] ⊂ Ωn+1 and the estimate is obvious. So, let [xy] 6⊂ Ω̄n. Then [xy]\Ω̄n consists
of several segments. Each of these segments is interrupted twice and the above de-
scribed construction, consisting of |Zn| labyrinths, is inserted into each interruption.
The set Zn consists of the elements z1, . . . , zp, p = |Z|. Let z = zi. Let

La1
i
,b1

i
,An

(zi), La2
i
,b2

i
,An

(zi), . . . ,Laq
i
,bq

i
,An

(zi)

be the labyrinths of these constructions, listed in the order they are met on [xy],
beginning from x. Consider the decomposition

mk(zi − x; x)−mk(zi − y; y) =

[mk(zi − x; x)−mk(zi − a1
i ; a

1
i )] + [mk(zi − a1

i ; a
1
i )−mk(zi − b1

i ; b
1
i )]+

+[mk(zi − b1
i ; b

1
i )−mk(zi − b2

i ; b
2
i )] + [mk(zi − b2

i ; b
2
i )−mk(zi − a2

i ; a
2
i )]+

+[mk(zi − a2
i ; a

2
i )−mk(zi − a3

i ; a
3
i )] + · · ·+ [mk(zi − aq

i ; a
q
i )−mk(zi − y; y)].

So, using the estimate for labyrinths, we obtain

‖mk(zi − x; x)−mk(zi − y; y)‖Mk+1
∞ (Ωn+1)

≤

≤ ‖mk(zi − x; x)−mk(zi − a1
i ; a

1
i )‖Mk+1

∞ (Ωn+1)
+

+
∑

r=1,3,5,...

{‖mk(zi − ar
i ; a

r
i )−mk(zi − br

i ; b
r
i )‖Mk+1

∞ (Ωn+1)
+

+‖mk(zi − br
i ; b

r
i )−mk(zi − br+1

i ; br+1
i )‖Mk+1

∞ (Ωn+1)
+

+‖mk(zi − br+1
i ; br+1

i )−mk(zi − ar+1
i ; ar+1

i )‖Mk+1
∞ (Ωn+1)

+

+‖mk(zi − ar+1
i ; ar+1

i )−mk(zi − ar+2
i ; ar+2

i )‖Mk+1
∞ (Ωn+1)

}+

+‖mk(zi − aq
i ; a

q
i )−mk(zi − y; y)‖Mk+1

∞ (Ωn+1)
≤

≤
∫

x̂a1
i

|zi − w|kd|w|+
q−1∑
r=1

{C(k)
∫

[ar
i
br

i
]

|zi − w|kd|w|+
∫

b̂r
i
br+1

i

|zi − w|kd|w|+

+C(k)
∫

[br+1
i

ar+1
i

]

|zi − w|kd|w|+
∫

̂ar+1
i

ar+2
|zi − w|kd|w|+

∫

âq
i
y

|zi − w|kd|w|}.
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Here we remark that the arcs x̂ai, b̂r
i b

r+1
i , ̂ar+1

i ar+2
i , âq

i y are ”almost straight”, i.e.
their lengths are not greater than twice the related distances, so we may estimate
the above sum by

C(k)
∫

[xy]

|zi − w|kd|w|

and the property (Ωn+1,4) is verified. So the required domain is constructed.

§3. Labyrinths

3.1 Elementary and standard labyrinths.
Elementary labyrinths are special systems of horizontal and vertical segments,

equipped with special systems of points.
Consider a Cartesian coordinate system. We identify the point (x, y) with the

vector xe1 + ye2, where e1, e2 are the unit vectors of the coordinate axis. First we
describe the mentioned systems of points. Fix a natural k and consider the points

v0,j = (0,
j

k + 1
), j = 1, 2, . . . , k + 1.

Fix α, 0 < α < 1 (further we shall choose α very close to 1), and fix an odd L ∈ N
such that αk(1− α(L−1)k) > 1

2 . Consider the points

vs,j = (0, (−α)s j

k + 1
), j = 1, 2, . . . , k + 1; s = 0, 1, . . . , L;

these points are called ”the s-th generation vertices”. Additionally we assume that
all numbers νs,j = (−α)s j

k+1 (j = 1, 2, . . . , k + 1, s = 0, 1, . . . , L) are pairwise
distinct (for example, we may choose α to be transcendental). Next, fix a small
ε > 0, such that 4(k + 1)Lε < 1. Consider the horizontal intervals

H(s, j) = {(x, (−α)s j

k + 1
) : −εαs ≤ x ≤ 0}

– we call them ”the s-th generation horizontals”. Obviously, vs,j ∈ H(s, j), vs,j are
the right ends of the corresponding horizontals H(s, j). Let ls,j denote the left end
of the horizontal H(s, j), ls,j = (−εαs, (−α)s j

k+1 ). The length of horizontals of the
next generation is smaller then the length of horizontals of a given generation.

Consider the vertical interval

Ṽ (L) = {(−εαL, y) : (−α)L = −αL ≤ y ≤ αL−1 = (−α)L−1}.
This vertical contains all lL,j (1 ≤ j ≤ k + 1) and it intersects many horizontals
of previous generations. We want to improve Ṽ (L) in such a way that it will not
intersect horizontals of the generations, previous to the L-th one (except of the
horizontal H(L− 1, k + 1)), and its length will not change too much.

Let δ denote a positive number such that the intervals [νs,j − δ, νs,j + δ] are
pairwise disjoint (s = 0, 1, . . . , L, j = 1, 2, . . . , k + 1). Now let us erase the
following subintervals of Ṽ (L) :

er(L; s, j) = {(−εαL, y), νs,j − δ ≤ y ≤ νs,j + δ}
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(s, j) : H(s, j)
⋂

Ṽ (L) 6= ∅, s ≤ L− 1, (s, j) 6= (L− 1, k + 1)

and, instead of them, let us paste in the following constructions:

ps(L; s, j) = {(x, νs,j − δ), −εαL ≤ x ≤ εαL

2
}

⋃
{(εαL

2
, y), νs,j − δ ≤ y ≤ νs,j + δ}

⋃
{(x, νs,j + δ),−εαL ≤ x ≤ εαL

2
}.

Fig. 2

So, let

V (L) =




Ṽ (L) \
⋃

(s,j):H(s,j)∩Ṽ (L)6=∅
s≤L−1

(s,j) 6=(L−1,k+1)

er(L; s, j)




⋃




⋃

(s,j):H(s,j)∩Ṽ (L)6=∅
s≤L−1

(s,j) 6=(L−1,k+1)

ps(L; s, j)




Obviously, V (L) does not intersect horizontals of the generations previous to the
L-th one, except of the horizontal H(L− 1, k + 1). Its length does not exceed

αL + αL−1 + 2 · (k + 1) · L · 2ε · αL ≤ αL−1 + αL(1 + 4(k + 1)Lε) ≤

≤ αL−1 + αL2 ≤ 2(αL−1 + αL) = 2 length Ṽ (L) < 4αL.

Now consider the vertical

Ṽ (L− 1) = {(−εαL−1, y) : y between (−α)L−2 and (−α)L−1}

This vertical contains all lL−1,j (1 ≤ j ≤ k + 1) and it intersects many horizontals
of the previous generations (and does not intersect horizontals of the next gener-
ation). We again wish to improve Ṽ (L− 1) in such a way that it will not intersect
horizontals of generations other than the (L − 1)-th one, except of the horizontal
H(L− 2, k +1), it will not intersect V (L), and its length will not change too much.
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Consider the following subintervals of Ṽ (L− 1)

er(L− 1; s, j) = {(−εαL−1, y) : νs,j − δ

2
≤ y ≤ νs,j +

δ

2
}.

(s, j) : H(s, j) ∩ Ṽ (L− 1) 6= ∅, s ≤ L− 2, (s, j) 6= (L− 2, k + 1).

Consider the following constructions:

ps(L− 1; s, j) ={(x, νs,j − δ

2
) : −εαL−1 ≤ x ≤ εαL

4
}

⋃

{(εαL

4
, y) : νs,j − δ

2
≤ y ≤ νs,j +

δ

2
}

⋃

{(x, νs,j +
δ

2
) : −εαL−1 ≤ x ≤ εαL

4
}.

Let
V (L− 1) =




Ṽ (L− 1) \
⋃

(s,j):H(s,j)∩Ṽ (L−1)6=∅
s≤L−2

(s,j)6=(L−2,k+1)

er(L− 1; s, j)




⋃




⋃

(s,j):H(s,j)∩Ṽ (L−1)6=∅
s≤L−2

(s,j)6=(L−2,k+1)

ps(L− 1; s, j)




Obviously, V (L− 1) does not intersect V (L) and does not intersect the horizontals
of the generations 1, 2, . . . , L−2, except of the horizontal H(L−2, k+1). Its length
does not exceed

αL−2 + αL−1 + 2(k + 1)(L− 1)2εαL−1 ≤
≤ αL−2 + αL−1(1 + 4(k + 1)Lε) ≤ 2 length Ṽ (L− 1) < 4αL−1.

Going on, we construct the sets

V (L− 1), V (L− 3), . . . , V (1) and V (0) = {(−ε, y) : 0 ≤ y ≤ 1}

with the following properties:
(i) V (s) connects all H(s, j) to H(s− 1, k +1) (j = 1, . . . , k +1); s = 1, 2, . . . , L;

V (0) connects all H(0, j) to H(0, k + 1);
(ii) the length of V (s) does not exceed 4αs;
(iii) Consider vs−1,j and vs,p (1 ≤ j, p ≤ k + 1, 1 ≤ s ≤ L). There is a path

connecting vs−1,j and vs,p (the path consists of H(s − 1, j), a part of V (s − 1), a
part of H(s− 1, k + 1), a part of V (s) and H(s, p)). Its length does not exceed

(εαs−1) + 4αs−1 + (εαs−1) + 4αs + (εαs) ≤

≤ 5(αs−1 + αs) ≤ 5(k + 1)
(

αs−1 + αs

k + 1

)
≤

≤ 5(k + 1)|vs−1,j − vs,p|.
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Now we introduce an elementary labyrinth:

L(α, ε) =

=
L⋃

s=0

V (s)
⋃

0≤s≤L
1≤j≤k+1

H(s, j)
⋃
{(x,

(−α)L

k + 1
) : 0 ≤ x ≤ εαL}

⋃
{(εαL, y) : 0 ≥ y ≥ −1}

Note that all vs,j ∈ L(α, ε).
Choose γ > 0, ρ > 0. Consider the sets

Li(α, ε, γ, ρ) = {(x +
i

k + 1
γ, ρy) : (x, y) ∈ L(α, ερ)}, i = 1, 2, . . . , k + 1,

ε is chosen so small that Li(α, ε, γ, ρ) are pairwise disjoint and 4L(k + 1)ερ < 1.
Now we introduce a standard labyrinth L(α, ε; γ, ρ) :

L(α, ε; γ, ρ) =
k+1⋃

i=1

Li(α, ε; γ, ρ)
⋃
{(x, ρ) : 0 ≤ x ≤ γ}

⋃
{(0, y) : 0 ≤ y ≤ ρ}

⋃
{(x,−ρ) : 0 ≤ x ≤ γ

k + 2
k + 1

}
⋃
{(γ k + 2

k + 1
, y) : 0 ≥ y ≥ −ρ}.

Further we omit ε in the notation, assuming only that ε is small enough. Note
that any path in L(α, γ, ρ), joining (0, 0) and (γ k+2

k+1 , 0), must pass through one of
the elementary labyrinths Li(α, γ, ρ). The point (0, 0) is called the source of the
labyrinth L(α, γ, ρ), the point (γ k+2

k+1 , 0) is called the sink of the labyrinth.

3.2. Decomposition.
Consider the measure

mk(Λe1; 0)−mk(Λe1 − b; b)

where e1 is the vector {1, 0}, 0 = (0, 0) is the source and b is the sink point (and
the corresponding vector) (γ k+2

k+1 , 0).
We present a special decomposition of this measure:
Let vi

sj = ρvsj + i
k+1γe1, s = 0, 1, . . . , L, i, j = 1, 2, . . . , k + 1

mk(Λe1; 0)−mk(Λe1 − b; b) =

=
∑

1≤i,j≤k+1

xiyj [mk(vi
0j ; 0)−mk(0; vi

0j)]+

+
∑

1≤i,j,p≤k+1

xizjp[mk(0; vi
0j)−mk(vi

0j − vi
1p; v

i
1p)]+

+
∑

1≤i,j,p≤k+1

xizpj [mk(0; vi
1p)−mk(vi

1p − vi
2j ; v

i
2j)] + . . .

· · ·+
∑

1≤i,j,p≤k+1

xizjp[mk(0; vi
sj)−mk(vi

sj − vi
(s+1),p; v

i
(s+1),p)] + . . .
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+ · · ·
∑

1≤i,j≤k+1

xiyj [mk(0; vi
Lj)−mk(vi

Lj − b; b)].

The numbers xi, yj , zjp will be chosen below.
This decomposition is valid provided the following equalities hold:

(A) Λqe⊗q
1 =

∑

1≤i,j≤k+1

xiyj(vi
0j)

⊗q, q = 0, 1, . . . , k

(B)
∑

1≤p≤k+1

zjp = yj , j = 1, . . . , k + 1

(C)
∑

1≤j≤k+1

zpj =
∑

1≤j≤k+1

zjp, p = 1, 2, . . . , k + 1

(D.01) 0 =
∑

1≤j≤k+1

zjp(vi
0j − vi

1p)
⊗q, q = 1, . . . , k; i, p = 1, 2, . . . k + 1

(D.12) 0 =
∑

1≤p≤k+1

zpj(vi
1p − vi

2j)
⊗q, q = 1, . . . , k; i, j = 1, 2, . . . , k + 1

. . . . . . . . . . . . . . .

(D.(L-1)L) 0 =
∑

1≤p≤k+1

zpj(vi
L−1,p − vi

Lj)
⊗q, q = 1, . . . , k; i, j =, 2, . . . , k + 1

(E) (Λe1 − b)⊗q =
∑

1≤i,j≤k+1

xiyj(vi
Lj − b)⊗q, q = 0, . . . , k

So, we write a system of equations for xi, yj , zjp. Since we are working in the
symmetric tensor power of R2, (A) gives:

Λqe⊗q
1 =

∑

1≤i,j≤k+1

xiyj(ρν0je2 +
i

k + 1
γe1)⊗q =

=
∑

1≤i,j≤k+1
0≤r≤q

xiyj

(
q

r

)
(e⊗(q−r)

2 ⊗ e⊗r
1 )

(
iγ

k + 1

)r

νq−r
0j ρq−r

or

Λq =
∑

1≤i,j≤k+1

xiyj

(
iγ

k + 1

)q

, q = 0, 1, . . . , k

0 =
∑

1≤i,j≤k+1

xiyj

(
q

r

)(
iγ

k + 1

)r

νq−r
0,j ρq−r, q = 0, 1, . . . , k; r = 0, 1, . . . , q − 1
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Let us put
∑

1≤j≤k+1

yj = 1. Then xi are uniquely determined from the equations

(Ax) (
k + 1

γ
Λ)q =

∑

1≤i≤k+1

xii
q, q = 0, 1, . . . , k

(this is a Vandermond system with the matrix V = (iq), 1 ≤ i ≤ k + 1, 0 ≤ q ≤ k).
Then yj are uniquely determined by the equations

∑

j

yjν
q−r
0j = 0, q − r = 1, 2, . . . , k

∑

j

yj = 1

or

(Ay)

∑

j

yjj
q = 0, q = 1, 2, . . . , k

∑

j

yj = 1

(this is again a Vandermond system with the same matrix V ).
In order to deal with the equalities (D.01), (D.12), . . . , (D.(L-1)L), we note that

vi
sp − vi

(s+1),j = ρνspe2 +
i

k + 1
γe1 − ρνs+1,je2 − i

k + 1
γe1 =

ρ[(−α)s p

k + 1
− (−α)s+1 j

k + 1
]e2 =

ρ(−α)s

k + 1
(p + jα)e2.

So the equalities (D.01), (D.12), . . . , (D.(L-1)L) simply mean that

∑

1≤p≤k+1

zpj

[
ρ(−α)s

k + 1
(p + jα)

]q

= 0 (q = 1, 2, . . . , k; j = 1, 2, . . . , k + 1)

or ∑

1≤p≤k+1

zpj(p + jα)q = 0, (q = 1, 2, . . . k; j = 1, 2, . . . , k + 1)

Recall that ∑

1≤p≤k+1

zpj =
∑

1≤p≤k+1

zjp = yj , j = 1, 2, . . . k + 1.

So,
0 =

∑
p

zpj(p + jα) =
∑

p

zpjp + αj
∑

p

zpj =
∑

p

pzpj + αjyj ,

0 =
∑

p

zpj(p + jα)2 =
∑

p

zpjp
2 + 2jα

∑
p

zpjp + α2j2
∑

p

zpj =

=
∑

p

zpjp
2 + 2jα(−αjyj) + α2j2yj =

∑
p

zpjp
2 − j2α2yj ,
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0 =
∑

p

zpj(p + jα)3 =

=
∑

p

zpjp
3 + 3jα

∑
p

zpjp
2 + 3j2α2

∑
p

zpjp + j3α3
∑

p

zpj =

=
∑

p

zpjp
3 + 3α3j3yj − 3α3j3yj + j3α3yj =

∑
p

zpjp
3 + j3α3yj

. . . . . . . . . . . . . . .

So we get:

(B)
∑

p

zjp = yj

and

(D)

∑
p

zpj = yj

∑
p

pzpj = (−αj)yj

∑
p

p2zpj = (−αj)2yj

. . . . . . . . . . . .
∑

p

pkzpj = (−αj)kyj

Introduce the matrices
Z = (zpj)p,j=1,...,k+1,

Diag(y1, . . . , yk+1) = (δijyj)i,j=1,...,k+1

Diag(p) = (δijp
i)i,j=1,...,k+1,

I =




1
1
...
1


 , I1 =




1
0
...
0


 ,

X =




x1
...

xk+1


 , Y =




y1
...

yk+1


 ,

Then we have

(Ax) V X = Diag(
(k + 1)Λ

γ
) I

(Ay) V Y = I1
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(B) ZI = Y

(D) V Z = Diag(−α)V Diag(y1, . . . , yk+1).

So we obtain

X = V −1Diag(
(k + 1)Λ

γ
) I

Y = V −1I1

Z = V −1Diag(−α)V Diag(y1, . . . , yk+1).

Let us check that ZI = Y :

ZI = V −1Diag(−α)V Diag(y1, . . . , yk+1)I =

= V −1Diag(−α)V Y = V −1Diag(−α)I1 = V −1I1 = Y.

The only thing remained to be checked is (E). As b = (γ k+2
k+1 )e1 = γ̃e1, so we

must check that

(Λ− γ̃)qe⊗q
1 =

∑

1≤i,j≤k+1

xiyj

(
γi

k + 1
e1 + (−α)L j

k + 1
e2 − γ̃e1

)⊗q

.

Calculate the right hand part:

∑

1≤i,j≤k+1
0≤r≤q

xiyj

(
q

r

)(
γi

k + 1
− γ̃

)r

(−α)L(q−r) jq−r

(k + 1)q−r
e⊗r
1 ⊗ e

⊗(q−r)
2 =

=
∑

1≤i,j≤k+1

xiyj

(
γi

k + 1
− γ̃

)q

e⊗q
1 +

+
∑

1≤i,j≤k+1
0≤r≤q−1

xiyj

(
q

r

)(
γi

k + 1
− γ̃

)r

(−α)L(q−r) jq−r

(k + 1)q−r
e⊗r
1 ⊗ e

⊗(q−r)
2 =

=


(

∑

1≤j≤k+1

yj)
∑

0≤r≤q

(
q

r

)
(−γ̃)q−r(

∑

1≤i≤k+1

xii
r)

γr

(k + 1)r


 e⊗q

1 +

+
∑

0≤r≤q−1

(
∑

1≤j≤k+1

yjj
q−r)×


 ∑

1≤i≤k+1

xi

(
q

r

)(
γi

k + 1
− γ̃

)r

(−α)L(q−r) 1
(k + 1)q−r

e⊗r
1 ⊗ e

⊗(q−r)
2


 .
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The first expression here equals

1 ·

 ∑

0≤r≤q

(
q

r

)
(−γ̃)q−r

(
Λ(k + 1)

γ

)r
γr

(k + 1)r


 e⊗q

1 = (Λ− γ̃)qe⊗q
1 .

(see (Ax)), the second is zero (see (Ay)), and (E) is checked.
So, the decomposition is valid, provided

X = V −1




1
(k+1)Λ

γ

...
( (k+1)Λ

γ )k


 , Y = V −1I1,

Z = V −1Diag(−α)V Diag(y1, . . . , yk+1).

Note that yi are constants, zjp are polynomials in α and do not depend upon
γ, ρ; further, xi do not depend upon α, ρ and yield the following estimate with C
depending only on k :

|xi| ≤ C

(
Λ
γ

)k

for large Λ
γ .

Remark. E.M. Dyn’kin observed that the above decomposition may be de-
scribed as a version of the Lagrange interpolation process: a polynomial is first
interpolated with respect to x at the nodes ( i

k+1 , 0) and then each of the obtained
polynomials is interpolated with respect to y at the nodes ( i

k+1 , νs,j).

3.3. Estimate.
Consider any domain Σ containing the labyrinth L(α, γ, ρ). Let us estimate the

norm
‖mk(Λe1; 0)−mk(Λe1 − b; b)‖M∞

k+1(Σ),

assuming that Λ
γ is large.

First we need to estimate the following expressions:

‖mk(vi
0j ; 0)−mk(0; vi

0j)‖M∞
k+1(Σ),

‖mk(0; vi
sj)−mk(vi

sj − vi
(s+1);p, v

i
(s+1),p)‖M∞

k+1(Σ),

‖mk(0; vi
Lj)−mk(vi

Lj − b; b)‖M∞
k+1(Σ).

Our estimates of these expressions are based on the following facts:
(a) there exists a path in L(α, γ, ρ), connecting 0 to vi

0j of length not exceeding
2|vi

0j |;
(b) there exists a path in L(α, γ, ρ), connecting vi

sj to vi
(s+1),p of length not

exceeding 5(k + 1)|vi
sj − vi

(s+1),p|;
(c) there exists a path in L(α, γ, ρ), connecting vi

Lj to b of length not exceeding
2|vi

Lj − b|.
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First, let us check (b). It is equivalent to the mentioned fact that there exists a
path in L(α), connecting vsj to v(s+1),p of length not exceeding

5(k + 1) |vsj − v(s+1),p|.

(Note that Li(α, γ, ρ) is obtained from L(α) by scaling by the factor ρ and by a
shift).

Next, the path, required in (a), may be obtained as follows:

{(0, y) : 0 ≤ y ≤ ρ}
⋃
{(x, ρ) : 0 ≤ x ≤ γi

k + 1
− ερ}

⋃
{( γi

k + 1
− ερ, y) : ρ

j

k + 1
≤ y ≤ ρ}

⋃
{(x, ρ

j

k + 1
) :

γi

k + 1
− ερ ≤ x ≤ γi

k + 1
}.

Its length does not exceed

ρ +
γi

k + 1
+ ρ =

γi

k + 1

(
1 +

ρ

γ
· 2(k + 1)

i

)
.

Taking ρ
γ such that ρ

γ · 2(k +1) < 1, we obtain that the length of the path does not
exceed

2
γi

k + 1
≤ 2|vi

0,j |.

And, finally, the path required in (c), may be obtained as follows:

{ path from vi
Lj to vi

L,1}
⋃
{(x +

γi

k + 1
,
−ραL

k + 1
) : 0 ≤ x ≤ εραL}

⋃
{(εραL +

γi

k + 1
, y) :

−ραL

k + 1
≥ y ≥ −ρ}

⋃
{(x,−ρ) : εραL +

γi

k + 1
≤ x ≤ γ

k + 2
k + 1

}
⋃
{(γ k + 2

k + 1
, y) : −ρ ≤ y ≤ 0}.

Its length does not exceed

ρ( length of VL) + εραL + ρ + γ
k + 2− i

k + 1
+ ρ ≤

≤ ρ · 4αL + εραL + 2ρ + γ
k + 2− i

k + 1
≤

≤ 2ρ + ρ + ρ + γ
k + 2− i

k + 1
= γ

k + 2− i

k + 1

(
1 +

ρ

γ

5(k + 1)
(k + 2− i)

)
.

We may assume that

ρ5(k + 1)
γ(k + 2− i)

≤ 1, i = 1, 2, . . . , k + 1,
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so the length of the path does not exceed

2γ
k + 2− i

k + 1
≤ 2|vi

Lj − b|.

Let us note that if there exists a polygonal path in Σ, connecting x and y, such
that its length is not exceeding C|x− y|, then

‖mk(x− y; y)−mk(0; x)‖M∞
k+1(Σ) ≤ Ck+1|x− y|k+1

Really there exist x0 = y, x1, . . . , xn = x, xi ∈ Σ, [xixi+1] ⊂ Σ (i = 0, 1, . . . , n− 1)∑n−1
i=0 |xi+1 − xi| ≤ C|x− y|. Then

mk(x− y; y)−mk(0; x) =
n−1∑

i=0

(mk(x− xi; xi)−mk(x− xi+1, xi+1))

so
‖mk(x− y; y)−mk(0; x)‖M∞

k+1(Σ) ≤

≤
n−1∑

i=0

‖mk(x− xi;xi)−mk(x− xi+1; xi+1)‖M∞
k+1(Σ) ≤

≤
n−1∑

i=0

∫

[xixi+1]

|x− w|kd|w| ≤ C max
w∈∪n−1

i=0 [xi,xi+1]
|x− w|k · |x− y| =

= C max
0≤i≤n

|x− xi|k|x− y| ≤

≤ C max
0≤i≤n

(|x− x0|+ |x0 − x1|+ · · ·+ |xi−1 − xi|)k|x− y| ≤ Ck+1|x− y|k+1.

So, we get:
‖mk(Λe1; 0)−mk(Λe1 − b; b)‖M∞

k+1(Σ) ≤

≤
∑

1≤i,j≤k+1

|xiyj | · ‖mk(vi
0j ; 0)−mk(0; vi

0j)‖M∞
k+1(Σ)+

+
∑

1≤i,j,p≤k+1

|xizjp| · ‖mk(0; vi
0j)−mk(vi

0j − vi
1p; v

i
1p)‖M∞

k+1(Σ) + . . .

· · ·+
∑

1≤i,j≤k+1

|xiyj | · ‖mk(0; vi
Lj)−mk(vi

Lj − b; b)‖M∞
k+1(Σ) ≤

≤ [5(k + 1)]k+1 {
∑

1≤i,j≤k+1

|xiyj | · |vi
0j |k+1 +

∑

1≤i,j,p≤k+1

|xizjp| · |vi
0j − vi

1p|k+1+

+
∑

1≤i,j,p≤k+1

|xizpj | · |vi
1p − vi

2j |k+1 + · · ·+
∑

1≤i,j,p≤k+1

|xizpj | · |vi
L−1,p − vi

Lj |k+1+

+
∑

1≤i,j≤k+1

|xiyj | · |vi
Lj − b|k+1} ≤
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(taking into account that Λ
γ is assumed to be large enough and we chose α close to

1 and ρ much smaller than γ)

≤ [5(k + 1)]k+1{(k + 1)2C
(

Λ
γ

)k
((

γ

k + 1

)2

+ ρ2

) k+1
2

+

+
L−1∑
s=0

(k + 1)3C
(

Λ
γ

)k

(2ραs)k+1 + (k + 1)2C
(

Λ
γ

)k
((

γ

k + 1

)2

+ ρ2

) k+1
2

} ≤

≤ A(k)

[
Λkγ + Λkγ

(
ρ

γ

)k+1 L−1∑
s=0

αs(k+1)

]
≤

≤ A(k)Λkγ

[
1 +

(
ρ

γ

)k+1

· 1
1− αk+1

]
.

Now choose 0 < α < 1, α close to 1, and choose ρ
γ such, that

(
ρ

γ

)k+1

· 1
1− αk+1

=
1
2
.

Certainly, ρ
γ will be very small. So, we obtain (assuming that Λ

γ is large enough)

‖mk(Λe1; 0)−mk(Λe1 − b; b)‖M∞
k+1(Σ) ≤

≤ 2A(k)Λkγ = 2A(k)‖Λe1‖k|b|k + 1
k + 2

≤ C(k)
∫

[0b]

|Λe1 − w|kd|w|.

3.4. Construction of a rapidly growing smooth function on a neighbor-
hood of L(α, γ, ρ).

Now we define a special function on a neighborhood of L(α, γ, ρ), it will be a
function ”of the fastest growth” in a small neighborhood of L(α, γ, ρ), where its
k-th derivatives will be bounded by 1.

We shall construct this function on a neighborhood of L(α) and then define it on
a neighborhood of Li(α, γ, ρ) and on a neighborhood of L(α, γ, ρ). L(α) is a union
of the sets

W (0) = V (0)
⋃

(
k+1⋃

j=1

H(0, j)),

W (s) = V (s)
⋃

(
k+1⋃

j=1

H(s, j) (0 < s < L)

W (L) = V (L)
⋃

(
k+1⋃

j=1

H(L, j))
⋃
{(x,

(−α)L

k + 1
) : 0 ≤ x ≤ εαL}

⋃
{(εαL, y) : −1 ≤ y ≤ 0}

W (s1)
⋂

W (s2) = ∅ for |s1 − s2| ≥ 2
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W (s)
⋂

W (s + 1) = {(−εαs+1, (−α)s)} for s = 0, 1, . . . , L− 1

Now we begin to construct the function Ψ(x, y) in a very thin neighborhood
of L(α). ”Very thin” means that we choose rectangles around every vertical or
horizontal segment in such a way that the rectangles surrounding two noncoinciding
parallel segments are disjoint.

Consider a smooth function φ(t) on R, such that:
φ is identically zero on (−∞, 0],
φ is identically constant c on [1,∞),
|φ(k)(t)| ≤ 1.
Consider an elementary labyrinth L(α). For 1 ≤ s ≤ L − 1 consider the sets:

U−(s) and U+(s) :
U−(s) =

⋃
t<s

W (t),

U+(s) =
⋃
t>s

W (t).

Note that
U−(s)

⋂
W (s) = {(−εαs−1, (−α)s)},

W (s)
⋂

U+(s) = {(−εαs, (−α)s+1)}.
Let us define special functions Ψs (1 ≤ s ≤ L− 1) on L(α) :

Ψs(x, y) =





0, (x, y) ∈ U−(s),
αskφ(1− (−α)−sy), (x, y) ∈ W (s),
αskc, (x, y) ∈ U+(s).

One can easily check that this function may be naturally extended to a smooth
function on a thin neighborhood of L(α) such that this extended function locally
depends only upon y. (One needs only to check that the function αskφ(1−(−α)−sy)
and all its derivatives vanish at y = (−α)s, and this function is constant αskC near
y = (−α)s+1). Note that

|
(

∂

∂y

)l

Ψs| ≤ hlα
s(k−l) ≤ hl,

for 1 ≤ l ≤ k, hk = 1, all mixed partial derivatives of Ψs are identically zero.
Consider the function

Ψ(x, y) =
L−1∑
s=1

Ψs(x, y)

defined in a thin neighborhood of the elementary labyrinth L(α). Note that the

supports of
(

∂
∂y

)l

Ψs (1 ≤ l ≤ k), are pairwise disjoint, so

|
(

∂

∂y

)l

Ψ| ≤ hl, 1 ≤ l ≤ k

(mixed partial derivatives are also identically zero on the neighborhood of L(α)).



26 NAHUM ZOBIN

Now let us calculate

Ψ(0, 1)−Ψ(εαL, 0) =
L−1∑
s=1

[Ψs(0, 1)−Ψs(εαL, 0)]

The point (0, 1) belongs to U−(s) for all s > 1, the point (εαL, 0) belongs U+(s)
for all s < L, so we get

Ψ(0, 1)−Ψ(εαL, 0) =
L−1∑
s=1

[Ψs(0, 1)−Ψs(−εαL, 0)] =

=
L−1∑
s=1

[0− αskc] = −cαk · 1− α(L−1)k

1− αk
> −0.5c(1− αk)−1

(we assume that αk(1− α(L−1)k) > 1
2 ).

So, we have constructed a function defined in a narrow tube neighborhood
of L(α), such that it is identically zero near the initial point of the elementary
labyrinth, it is greater than 0.5 c(1 − αk)−1 near the final point of the elementary
labyrinth, locally it depends only upon the y-coordinate, its l-th derivatives are
bounded by hl

If we deal with a standard labyrinth L(α, γ, 1), we define a function Ψ̃α,γ on the
whole labyrinth by defining it on each elementary labyrinth separately just in the
manner described above. The fact, that all such functions may be glued together,
is obvious, - just put Ψ̃α,γ = 0 in a neighborhood of {(x, 1) : 0 ≤ x ≤ γ} and
{(0, y) : 0 ≤ y ≤ 1} and put Ψ̃α,γ = Ψ(εαL, 0) in a neighborhood of {(x,−1) : 0 ≤
x ≤ γ k+2

k+1} and {(γ k+2
k+1 , y) : 0 ≥ y ≥ −1}.

Next, if we deal with a standard labyrinth L(α, γ, ρ) we define the function Ψα,γ,ρ

by the formula

Ψα,γ,ρ(x, y) = ρkΨ̃α,γ(x,
y

ρ
).

3.5. Shifted labyrinths.
We need labyrinths obtained from L(α, γ, ρ) by shifts and rotations.
Let L(α, γ, ρ; ã, z) denote the labyrinth obtained as above under the following

assumptions:
(i) the origin is at the point ã,

(ii) the direction of the x-axis coincides with the direction of the vector z.

We assume that the labyrinth L(α, γ, ρ; ã, z) is endowed with a function ΨL

defined in a narrow tube neighborhood of L(α, γ, ρ; ã, z) such that
(1) ΨL is zero near ã;
(2) ΨL has the l-th derivatives, bounded by hl, hk = 1, 1 ≤ l ≤ k.

(3) ΨL ≥ 0.5ρkc(1−αk)−1 near the sink point b̃ of the labyrinth L(α, γ, ρ; ã, z) .
ΨL is constant near the sink.
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3.6. Construction of La,b,N (z).
Given a, b ∈ R2, z ∈ R2, N, we want to construct a set La,b,N (z) such that
(i) La,b,N (z) is the closure of a domain with a real analytic boundary;
(ii) La,b,N (z) ⊂ {t ∈ R2 : |t− a+b

2 | ≤ |a−b
2 };

(iii) a, b ∈ ∂La,b,N (z);
(iv) ‖mk(z − a; a)−mk(z − b; b)‖M∞

k+1(La,b,N (z)) ≤ C(k)
∫
[ab]

|z − w|kd|w|;
(v) there exists a function Ψa,b,N ∈ C∞(La,b,N (z)) such that
(*) Ψa,b,N is identically zero near a;
(**) Ψa,b,N is identically constant N near b;
(***) sup

x∈La,b,N (z)

|α|=l

|Ψ(α)
a,b,N (x)| ≤ hl, 1 ≤ l ≤ k, hk = 1

La,b,N (z) is constructed as follows:
Consider

C =
{

t ∈ R2 : |t− a + b

2
| ≤ |a− b

2
|
}

.

Consider the straight line passing through a+b
2 , parallel to the vector z. Choose

γ > 0 such that |z|
γ is large enough (for the estimate of Section 3.3). Construct a

shifted labyrinth with the source

ã =
a + b

2
− γ

2|z| z,

with the sink

b̃ =
a + b

2
+

γ

|z|
(

k + 2
k + 1

− 1
2

)
z,

with the unit vector z
|z| as the unit vector of the axis.

The parameters ρ, α, ε, L are chosen as follows:
First choose α as a solution of the equation

(1− αk+1)
k

k+1

1− αk
=

2kN

γkc
=

2kN · 4k

|a− b|kc

(c = φ(1)). This equation has a solution α, 0 ≤ α < 1, for any large N, because
the function in the left hand side tends to infinity as α → 1−.

Next, choose

ρ =
γ

2
(1− αk+1)

1
k+1 .

Then
ρ

γ
=

[
1
2
(1− αk+1)

] 1
k+1

¿ 1,

so for any Σ, containing the labyrinth

‖mk(z − ã, ã)−mk(z − b̃, b̃)‖M∞
k+1(Σ) ≤ 2A(k)

∫

[ãb̃]

|z − w|kd|w|.
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Choose an odd L ∈ N such that αk(1 − α(L−1)k) > 1
2 and choose a small ε > 0 as

it was explained above. Then we get

(
ρ
γ

)k+1

1− αk+1
=

{[
1
2 (1− αk+1)

] 1
k+1

}k+1

1− αk+1
=

1
2

< 1;

ρk

1− αk
=

γk

2k
· (1− αk+1)

k
k+1

1− αk
=

γk

2k
· 2kN

γkc
=

N

c
.

So the parameters of the shifted labyrinth are completely defined.
Consider the related function ΨL, ΨL is identically zero near ã, it is greater than

ρk

1− αk
c =

N

c
· c = N

near the sink of the labyrinth, it is infinitely differentiable in a neighborhood of the
labyrinth and its derivatives of order k are bounded by 1.

Connect a to ã and b to the sink by ”almost straight line” segments. Extend ΨL

to this segments by constants. Consider a domain with a real analytic boundary
such that it contains the labyrinth and these new ”almost straight line” segments
(except of the points a, b), This domain must be a neighborhood of the labyrinth
such that the function ΨL is defined there. The closure of this domain is exactly
the labyrinth La,b,N (z) and the function ΨL is exactly the function Ψa,b,N we need.

To check the remaining point (iv) we proceed as follows:

mk(z − a; a)−mk(z − b; b) = [mk(z − a; a)−mk(z − ã; ã)]+

+[mk(z − ã; ã)−mk(z − b̃; b̃)] + [mk(z − b̃; b̃)−mk(z − b; b)].

So
‖mk(z − a; a)−mk(z − b; b)‖M∞

k+1(L) ≤

≤ ‖mk(z − a; a)−mk(z − ã; ã)‖M∞
k+1(L)+

+‖mk(z − ã; ã)−mk(z − b̃; b̃)‖M∞
k+1(L)+

+‖mk(z − b̃; b̃)−mk(z − b; b)‖M∞
k+1(L) ≤

≤ C(k)
∫

[aã]

|z − w|kd|w|+ C(k)
∫

[ãb̃]

|z − w|kd|w|+ C(k)
∫

[b̃b]

|z − w|kd|w| ≤

≤ C(k)
∫

[ab]

|z − w|kd|w|.

and we see that the required set is constructed together with the required function.
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