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Abstract Let G be one of the Coxeter groups An, Bn, Dn, or I2(n),
naturally acting on a Euclidean space V , and let L(G) stand for the
set of linear transformations φ of End V that satisfy φ(G) = G. It is
easy to see that L(G) contains all transformations of the form X 7→
PXQ, X 7→ PX∗Q, where P, Q belong to the normalizer of G in the
orthogonal group and PQ ∈ G. We show that in most cases these
transformations exhaust L(G); the only (rather unexpected) exception
is the case G = Bn.

1. Introduction

Let G be a finite irreducible Coxeter group naturally acting on a finite
dimensional real Euclidean space V ; see [2, 4] for related definitions and
terminology. The facial structure of the polytope conv G (the convex
hull of G) was recently studied in [5, 13]. In the present paper we
address the linear symmetries of conv G — the linear transformations
of the space End V of linear operators on E preserving the polytope
conv G or, equivalently, preserving G. The problem of describing the
set L(S) of linear transformations of End V preserving a given set S ⊂
End V is an example of linear preserver problems, studied by many
researchers, see. e.g., [14].

One can find many simple transformations belonging to L(G), e.g.,
left and right multiplications by elements of G, and the operation T 7→
T ∗ of taking the adjoint operator obviously belong to L(G). In fact,
the following result can be readily verified for any subgroup G of the
orthogonal group O(V ):

Lemma 1.1. Let P, Q belong to the normalizer N(G) of G in the or-
thogonal group O(V ), and assume that PQ ∈ G. Then the transforma-
tions X 7→ PXQ and X 7→ PX∗Q are in L(G). These transformations
constitute a group.
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The maps X 7→ PXQ and X 7→ PX∗Q are called rigid embed-
dings, see [7]. Let RE(G) denote the group described in Lemma 1.1.
Then, according to this Lemma,

RE(G) ⊂ L(G).

As we shall see, these two sets often coincide: L(G) = RE(G); in our
study only G = Bn delivers an unexpected counterexample.

Evidently, if P and Q are invertible operators, then transformations
of End V of the form X 7→ PXQ or X 7→ PX∗Q preserve ranks,
i.e., rank(PXQ) = rank(PX∗Q) = rank X. It is known (see, e.g., [14,
Chapter 2]) that these are the only rank-preserving linear transforma-
tions of End V. So, RE(G) may be described as the rank-preserving
part of L(G). Furthermore, if φ is unital, i.e., φ sends the identity
operator on End V to itself, then such φ belonging to RE(G) will be
of the form X 7→ PXP−1 or X 7→ PX∗P−1. These transformations
are automorphisms or anti-automorphisms of the group G, i.e., they
preserve the group structure. Thus, the equality L(G) = RE(G) (if
it holds) means that the linear transformations preserving G actually
preserve much more.

The usual scalar product (T, S) = tr(TS∗) turns End V into a Eu-
clidean space. One can show (see Lemma 2.1 below) that every trans-
formation φ of the space End V sending conv G onto itself has to be
orthogonal with respect to this scalar product. So, L(G) is in fact
a subgroup of the group O(End V ) of orthogonal transformations of
End V .

The set G is a subset of a Euclidean sphere (of radius
√

dim V ) and
thus coincides with the set of the extreme points of its convex hull:
Extr(conv G) = G. This, in turn, implies that L(G) = L(conv G).

For U ⊂ End V there is a standard notion of the polar set

U◦ = {T ∈ End V : (T, S) ≤ 1 ∀S ∈ U}.
One can easily see that the set U◦ is closed and convex, and it contains
the origin. Furthermore, U◦ = (conv U)◦. It is well known that study-
ing a convex set U together with its polar set U◦ is helpful in many
problems of convex geometry.

The previous considerations and the orthogonality of transformations
from L(G) imply that the following sets coincide:

L(G) = L(conv G) = L(G◦) = L(Extr(G◦)).

Obviously, in our study it would be helpful to know the set Extr(G◦),
and we do know this set in many cases, see [5, 13]. To describe it we
need some additional definitions and notation.
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For a subgroup G of the linear group GL(V ) define the envelope of
G as follows:

env G = {T ∈ End V : TU ⊂ U

for every convex closed G-invariant subset U of V }.
One readily checks that env G is a closed convex semigroup of operators,
containing conv G. This semigroup naturally arises in the theory of
operator interpolation, see [16, 17]. When G is a finite irreducible
Coxeter group there exists (see [16]) a convenient dual description of
the semigroup env G :

Extr((env G)◦) = B(G),

where the set B(G) of Birkhoff tensors, introduced in [5, 13], is de-
fined as follows:

B(G) = {ω ⊗ τ/mG(ω, τ) : ω, τ are weights of G associated with

distinct end vertices of the Coxeter graph}.
Here mG(x, y) = maxg∈G〈gx, y〉. See [5, 13] for an explanation of the
relations between Birkhoff tensors and the famous Birkhoff Theorem
[3] about doubly stochastic matrices.

It is “almost” known that if the Coxeter graph Γ(G) of the group G is
not branching then in fact conv G = env G, here “almost” means that
the only finite irreducible Coxeter group with a non-branching graph
for which this is not yet proven is the group H4, see [5, 13]. Therefore
for every Coxeter group G with a non-branching graph (except for,
possibly, H4) we have

Extr(G◦) = Extr((conv G)◦) = Extr((env G)◦) = B(G).

So, in this case we have L(G) = L(B(G)). Note that the set B(G) by
definition consists only of rank 1 operators, therefore it is usually easier
to deal with. As for finite irreducible Coxeter groups with branching
graphs, it is known [5, 13] that conv G 6= env G. The calculation of
L(env G)(= L(B(G))) is then an interesting problem by itself.

All finite irreducible Coxeter groups are classified (see, e.g., [4]), and
it is known that there exist four infinite families of Coxeter groups
An,Bn,Dn, I2(n), and six exceptional groups E6,E7,E8,F4,H3,H4.
Groups An,Bn, I2(n),F4,H3,H4 have non-branching graphs, the rest
(Dn,E6,E7,E8) have branching graphs. So,

(1) if G = An,Bn, I2(n),F4, or H3, then L(G) = L(B(G)).

In this paper we give a complete description of the set L(G) for each
of the four infinite families of finite irreducible Coxeter groups. We
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have partial results for the six exceptional groups but it seems that
some additional techniques is needed for a complete solution of the
problem, see Section 7. Only one family of those we study here – the
family Dn – has branching graphs, so conv Dn 6= env Dn. Nonetheless,
we show that L(Dn) = L(env Dn) = RE(Dn) (see Section 5).

Let us mention several known related results. For G = O(V ), Wei
[15] showed that L(O(V )) = RE(O(V )), i.e.,

φ ∈ L(O(V )) if and only if φ(A) = PAQ or φ(A) = PA∗Q

for some orthogonal operators P and Q. The case G = An was studied
in [11], and it was shown that L(An) = RE(An). We give a different
proof of this result below.

Note that one may also study linear transformations φ of End V such
that φ(G) ⊂ G, not necessarily φ(G) = G. When G = O(V ), one gets
the same conclusion as above except when dim V = 2, 4, 8, and there
exist singular transformations in these cases, see [15] for details.

For the preserver results for other classical linear groups, see [14,
Section 4.6].

Our interest in linear symmetries of the RE(G)-invariant convex
polytopes conv G (and env G) was mostly motivated by a desire to
understand the geometry of general RE(G)-invariant convex bodies —
the unit balls of RE(G)-invariant norms. If we consider a complex
Hilbert space V and take G to be the group U(V ) of unitary opera-
tors, then RE(U(V ))-invariant norms are called unitarily invariant
norms (see, e.g., [9]). These norms are closely connected with the
Schatten – von Neumann ideals, and they have been studied by many
authors, see [9]. Since Euclidean balls in V are obviously the only
U(V )-invariant convex closed sets in V, then env U(V ) is simply the
unit ball of the operator norm, which in turn coincides with conv U(V ).
So,

Extr(env U(V ))◦ = {x⊗ y ∈ End V : 〈x, x〉〈y, y〉 = 1} = B(U(V )).

Therefore, convB(U(V )) is the unit ball of the norm dual to the oper-
ator norm, which is the nuclear (or trace) norm. The operator norm
and the nuclear norm are very important examples of unitarily invariant
norms. In particular, it is known that every unitarily invariant norm
is an interpolation norm for this couple, see, e.g., [9]. These two norms
are natural “non-commutative” analogs of Bn-invariant norms l∞ and
l1. It was shown in [16] that if G is an irreducible Coxeter group whose
graph is non-branching and if ωi, i = 1, 2, are the weights of G associ-
ated with distinct end vertices of the Coxeter graph, then conv OrbG ωi

are the unit balls of G-invariant (pseudo)norms analogous to the l∞-
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and l1-norms. So, the sets conv G and convB(G) whose linear sym-
metries we study in this paper can be viewed as the unit balls of the
“non-commutative” (or “quantum”) versions of these (pseudo)norms.

Isometries of RE(U(V ))- and Bn-invariant norms have been studied
by many authors, see, e.g., [8, 12, 10].

It is important to explore the possible isometries of general RE(G)-
invariant norms. In particular, it would be very interesting to compute
the isometries of the RE(G)-invariant norms whose unit balls are the
following convex bodies: conv OrbRE(G) C for C ∈ End V. Note that if
C ∈ G, then OrbRE(G) C = G, and if C ∈ B(G) then (at least in the case
of a non-branching graph) OrbRE(G) C = B(G). Therefore the problems
we address in this paper can be described as exploring the isometries
of the basic RE(G)-invariant norms, namely those whose unit balls are
conv OrbRE(G) C where C ∈ G or C ∈ B(G), for the infinite families
of irreducible Coxeter groups. We anticipate that it would be very
difficult to solve such a problem for a general C ∈ End V.

2. Preliminary Results

Recall that for a set H ⊂ End V its commutant is defined as the
set of all operators on V commuting with each operator from H. The
commutant is said to be trivial if it consists only of scalar operators.
It is well known that the commutant of a subgroup of the unitary group
in a complex finite dimensional Hilbert space is trivial if and only if this
group is irreducible, or, equivalently, the linear span of this subgroup is
the whole End V. The situation of a subgroup of the orthogonal group
in a real finite dimensional Euclidean space is more complicated: if
the linear span of the subgroup is the whole End V then certainly the
commutant is trivial and the group is irreducible, but not vice versa
— an irreducible subgroup may span a proper subspace of End V, and
its commutant may be non-trivial. A good example is delivered by the
group of rotations by multiples of π/4 in R2. Nevertheless, it is known
(see, e.g., [5, 13]) that an irreducible Coxeter group spans the whole
End V, so its commutant is trivial.

Evidently, for every closed subset U of V the set L(U) is a closed
semigroup. Often one can prove much more:

Lemma 2.1. Let U be a subset of V spanning the whole V . Then
the set L(U) is actually a group. Assume, in addition, that U is com-
pact and that L(U) contains a subgroup of orthogonal operators whose
commutant is trivial. Then L(U) itself is a closed subgroup of the or-
thogonal group O(V ).
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Proof. The fact that operators from L(U) are invertible immediately
follows from the condition that U spans the whole space V. Therefore
L(U) is a subgroup of the linear group GL(V ), and it is obviously
closed.

If U is bounded then so is L(U). Therefore there exists a positive
definite operator T ∈ GL(V ) such that T (L(U))T−1 is a subgroup of
O(V ) (see, e.g., [1, 6]). Hence, for any φ ∈ L(U) ∩ O(V ), we see that
TφT−1(TφT−1)∗ is the identity operator, and hence T 2φ = φT 2. Since
the commutant of L(U) ∩ O(V ) is assumed to be trivial then T 2 is a
scalar operator. Therefore T, which is the positive square root of T 2,
is also a scalar operator. Hence, L(U) = T (L(U))T−1 is a subgroup of
O(V ).

Corollary 2.2. Let G be a subgroup of the orthogonal group O(V ),
spanning the whole space End V. Then L(G) ⊂ O(End V ).

Proof. By Lemma 2.1, we only need to present an orthogonal subgroup
of L(G) with a trivial commutant. Consider the group G × G, acting
on End V by left and right multiplications. Obviously, it is a part of
L(G). Since G spans the (dim V )2-dimensional space End V then one
can show that G×G spans a (dim V )4-dimensional space, i.e., the whole
End(End V ). This excludes the possibility of a nontrivial commutant.

Corollary 2.3. Let G be a finite irreducible Coxeter group, naturally
acting on V. Then L(B(G)) ⊂ O(End V ).

Proof. Since B(G) spans End V (see [5, 13]), it suffices to present an
orthogonal subgroup of L(B(G)) with a trivial commutant. We may
again choose the group G×G.

Lemma 2.4. The group RE(G) acts on the set B(G).

Proof. According to [16],

B(G) = Extr(conv(G◦ ⋂
{ rank 1 tensors })).

Thus, it suffices to show that RE(G) maps G◦ ∩ { rank 1 tensors }
into itself. To this end, consider x ⊗ y ∈ G◦ (i.e., such that ∀ g ∈
G, (g, x ⊗ y) ≤ 1). Then for all P, Q ∈ N(G) satisfying PQ ∈ G and
for any g ∈ G:

(g, P (x⊗ y)Q) = (P ∗gQ∗, x⊗ y) = ((P−1gP )(QP )−1, x⊗ y) ≤ 1,

because P−1gP ∈ G and QP = Q(PQ)Q−1 ∈ G.

Strategy of Proofs
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Let us outline the approach we are going to use to calculate the
groups L(G) and L(env G) = L(B(G)).

Let U be a finite subset of End V, spanning the whole space End V.
Assume that the group RE(G) acts on U, i.e., for every T ∈ RE(G)
and every u ∈ U we have Tu ∈ U . This assumption obviously holds
for U = G, and, due to Lemma 2.4, this assumption is also true for
U = B(G). Moreover, this action is transitive in all cases we study here
— this is obvious for U = G, also obvious for U = B(G), provided
Γ(G) is non-branching; not so obvious for U = B(Dn), see Lemma 5.4.

Take any φ ∈ L(U). Choose u0 ∈ U (if U = G then it is natural to
choose u0 = I). If φ(u0) /∈ RE(G)u0 then definitely RE(G) 6= L(U).
Certainly, this cannot happen in the cases we study in this paper since
in all these cases the action of RE(G) is transitive on U, but we cannot
exclude such a possibility for G = Ek, k = 6, 7, 8.

If φ(u0) ∈ RE(G)u0, then let T ∈ RE(G) be such that Tφ(u0) = u0.
Then φ1 = Tφ ∈ L(U), and φ1 fixes u0.

Let

U1 = {u ∈ U : (u, u0) = a1 6= (u0, u0)}.
We usually choose a1 = maxv 6=u0(v, u0). Since φ1 preserves the scalar
product and fixes u0, then φ1(U1) = U1. The subgroup

Stab u0 = {T ∈ RE(G) : Tu0 = u0}
also acts on U1. Choose u1 ∈ U1 and consider φ1(u1) ∈ U1. If φ1(u1) /∈
(Stab u0)u1, then L(U) 6= RE(G). Otherwise, take T1 ∈ Stab u0 such
that T1φ1(u1) = u1. Then φ2 = T1φ1 ∈ L(U) fixes both u0 and u1.

Continuing this procedure we either find out that L(U) 6= RE(G), or
deduce that φk ∈ L(U) fixes so many elements that it is only possible
if φk = I. In the latter case, φ ∈ RE(G).

In the body of the proofs, we will repeatedly make use of charac-
terizations of various subsets of U in terms of scalar products. We
will mark those characterizations as “claims”. Once stated, each such
claim can be justified by a straightforward (though sometimes lengthy)
computation.

Our investigation of the sets L(G) for Coxeter groups G is a case by
case study, in which we are using explicit matrix realizations for the
groups G and explicit formulas for their simple roots and fundamental
weights in special orthonormal bases given in [2, 4]. We use these
formulas in the sections below without further references. Our space
V is Rn (or a hypersubspace of Rn+1 — in the case G = An). In
what follows, we abbreviate O(Rn) to O(n), denote by {e1, . . . , en}
the standard basis of Rn, and let e =

∑n
j=1 ej. All operators will be
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described by their matrices in the standard basis. In particular, for
Eij = ei ⊗ ej, its matrix in the standard basis is eie

t
j. As usual, T t

denotes the transpose of the matrix T. We let Mn(R) denote the space
of real n× n matrices.

3. Groups An

Matrix Realization
For n ≥ 2, let Permn+1 be the group of (n+1)× (n+1) permutation

matrices. Consider the following subspace V of Rn+1 :

V = {v = (v1, . . . , vn+1)
t ∈ Rn+1 : v1 + · · ·+ vn+1 = 0}.

This subspace is invariant under the action of the group Permn+1 .
Every matrix P ∈ Permn+1 can be rewritten in the form

P = (P − eet/(n + 1)) + eet/(n + 1) = PV + PV ⊥ .

Obviously, PV e = 0, etPV = 0, and PV v = Pv for every v ∈ V. Group
An is the group of restrictions to V of operators from Permn+1 . So,
operators P |V from An can be identified with (n+1)× (n+1) matrices
PV , where P ∈ Permn+1 . Note that matrices PV have zero row and
column sums. Therefore the space End V (which coincides with the
linear span of An) is naturally identified with the space M0

n of (n+1)×
(n+1) real matrices with zero row and column sums. The natural scalar
product on End V is given by the usual formula (X, Y ) = tr(XY t).

Birkhoff Tensors
Let w = (n + 1)e1 − e = (n,−1, . . . ,−1)t ∈ V . Then

(n + 1)B(An) = {−PwwtQ : P, Q ∈ An} ⊂ M0
n.

Linear Preservers
Li, Tam and Tsing [11] showed that a linear preserver of An on M0

n

must be of the form A 7→ UAV or A 7→ UAtV for some U, V ∈ An.
Here we give a different proof.

Theorem 3.1. Let n ≥ 2. Then

L(An) = L(B(An)) = RE(An).

In other words, the following statements are equivalent for a linear
transformation φ of M0

n :

(a) φ(An) = An.
(b) φ(B(An)) = B(An).
(c) There exist U, V ∈ An such that φ is of the form

A 7→ UAV or A 7→ UAtV.
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Proof. By (1), (a) and (b) are equivalent. Clearly, (c) implies (b). It
remains to prove that (b) implies (c). So, let φ(B(An)) = B(An).

Let S = −(n + 1)B(An) = {Pw(Qw)t : P, Q ∈ An}. Then φ(S) =
S. We may assume that φ(wwt) = wwt (otherwise, replace φ by a
transformation of the form X 7→ Pφ(X)Q for some suitable P,Q ∈
An).

Now for j = 1, . . . , n+1, consider vj = (n+1)ej−e = Pjw, Pj ∈ An.
Then, obviously, w = v1, and

S = {Aij = viv
t
j : 1 ≤ i, j ≤ n + 1}.

Note that vt
pvp = n2 + n and vt

pvq = −(n + 1), if p 6= q, therefore

(Aij, Aks) = −(n2+n)(n+1) if and only if i = k, j 6= s, or i 6= k, j = s.

Since φ preserves the inner product, we get

(A11, φ(A12)) = (φ(A11), φ(A12)) = (A11, A12) = −(n2 + n)(n + 1),

so we conclude that
(i) φ(A12) = A1j,

or
(ii) φ(A12) = Aj1 = At

1j

for some j ≥ 2.
We may assume that (i) holds; otherwise, replace φ by a transfor-

mation of the form X 7→ φ(X)t (this will not destroy the condition
φ(A11) = A11 since At

11 = A11). Furthermore, we may assume that
φ(A12) = A12; otherwise, replace φ by a transformation of the form
X 7→ φ(X)Q where Q ∈ An corresponds to the transposition inter-
changing 2 and j (again, the condition φ(A11) = A11 is preserved).
Now, φ(A11) = A11 and φ(A12) = A12. Let j = 1, 2, then

(A1j, φ(A13)) = (φ(A1j), φ(A13)) = (A1j, A13) = −(n2 + n)(n + 1),

and hence φ(A13) = A1s for some s ≥ 3. Again, we may assume that
φ(A13) = A13. Repeating these arguments, we modify φ until we get
φ(A1j) = A1j for all j = 1, . . . , n + 1.

Since φ(A1j) = A1j for all j = 1, . . . , n+1, we see that for any s ≥ 2

φ(As1) /∈ {A1k : 1 ≤ k ≤ n + 1},
and

(φ(As1), A11) = (φ(As1), φ(A11)) = (As1, A11) = −(n2 + n)(n + 1).

Therefore for any s ≥ 2 we have φ(As1) = Aσ(s),1 for some permutation
σ of {1, 2, · · · , n + 1}, σ(1) = 1. We may assume that φ(As1) = As1;
otherwise, replace φ by a mapping of the form X 7→ Qφ(X) where



10

Q ∈ An corresponds to the permutation σ−1 (this will not destroy the
equalities φ(A1j) = A1j, 1 ≤ j ≤ n + 1, since σ(1) = 1).

Since φ fixes A1j, Aj1, 1 ≤ j ≤ n + 1, then φ maps the set {Aij :
2 ≤ i, j ≤ n + 1} onto itself. Take Aij, i, j ≥ 2. Then (φ(Aij), Ai1) =
(φ(Aij), φ(Ai1)) = (Aij, Ai1) = −(n2 + n)(n + 1), so φ(Aij) = Ais, s ≥
2. Similarly, we obtain that φ(Aij) = Arj, r ≥ 2. So, φ(Aij) = Aij.
Therefore φ fixes all elements of B(An), i.e., φ is the identity.

4. Groups Bn

Matrix Realization
Group Bn consists of all the 2nn! signed permutation matrices in

Mn(R).

Birkhoff Tensors
The set B(Bn) is the set of all matrices of the form eje

tQ or Qeet
j

with Q ∈ Bn.

Linear Preservers
Let X ◦ Y denote the Schur (entrywise) product of matrices X,Y ∈

Mn(R).

Theorem 4.1. Let n > 2. The following conditions are equivalent for
a linear transformation φ of Mn(R).

(a) φ(Bn) = Bn.
(b) φ(B(Bn)) = B(Bn).
(c) There exist P, Q ∈ Bn and a matrix S with entries ±1 such

that φ is of the form

(2) A 7→ S ◦ (PAQ) or A 7→ S ◦ (PAtQ).

Proof. By (1), (a) and (b) are equivalent. One readily checks that (c)
implies (a) and (b).

Suppose (b) holds. We may assume that

(3) φ(eet
1) = eet

1,

Each matrix X from B(Bn) has either exactly one row or exactly
one column consisting of ±1’s, with all other entries equal to zero,
let us call this row (or column) the special line of X. If the spe-
cial lines of X1, X2 ∈ B(Bn) are parallel and non-coinciding then
(X1, X2) = 0. If the special lines of X1, X2 ∈ B(Bn) are non-parallel,
then (X1, X2) = ±1. So, if for X1, X2 ∈ B(Bn) we have (X1, X2) dif-
ferent from 0,±1, then the special lines of X1, X2 must coincide. Note
that for odd n if X1, X2 ∈ B(Bn) have the same special lines, and the
special line of X1 consists of 1’s, then (X1, X2) 6= 0, so all matrices



11

from X⊥
1

⋂B(Bn) have their special lines parallel to the special line of
X1 but not coinciding with it.

Denote by Akj the matrix obtained from eet
j by changing the sign

of its (k, j)-entry: Akj = eet
j − 2eke

t
j. Note that Akj and At

kj are in
B(Bn).

Claim 1. Let n > 3. Then

{A1j : 1 ≤ j ≤ n} = {X ∈ B(Bn) : (X, eet
1) = n− 2}.

Claim 2. Let n = 3. Then

{A1j : 1 ≤ j ≤ 3} = {X ∈ B(B3) : (X, eet
1) = 1, and (X,Y ) = 0

for all Y ∈ B(B3) such that (Y, eet
1) = 0}.

Since φ fixes eet
1 and preserves the inner product on Mn(R), it follows

from Claims 1,2 that φ maps the set {Ak1 : 1 ≤ k ≤ n} onto itself:

(4) φ(Ak1) = Aσ(k),1 for a permutation σ : {1, . . . , n} → {1, . . . , n}
Combining (3) with (4) shows that

φ(eke
t
1) = eσ(k)e

t
1, 1 ≤ k ≤ n.

Replacing φ by Pφ with an appropriate permutation matrix P we en-
sure that

(5) φ(eke
t
1) = eke

t
1, 1 ≤ k ≤ n.

Consider φ(eje
t) ∈ B(Bn). Then

(φ(eje
t), eke

t
1) = (φ(eje

t), φ(eke
t
1)) = (eje

t, eke
t
1) = δjk,

so the special line of φ(eje
t) contains the (j, 1) position of the matrix.

Therefore this line is either the j-th row or the first column. The latter
cannot be true since (φ(eje

t), eke
t
1) = 0 for k 6= j. So, the special line

of φ(eje
t) is the j-th row. Replace φ with S ◦ φ with an appropriate

matrix S with ±1 entries, having entries 1 in the first column, — this
will not affect the equalities (5) — and we may assume that

(6) φ(eje
t) = eje

t, 1 ≤ j ≤ n.

Replacing eje
t in the previous considerations by At

j1, j ≥ 2, we con-
clude that the special lines of φ(At

j1), j ≥ 2, all coincide with the first
row. Since (φ(At

j1), e1e
t) = (φ(At

j1), φ(e1e
t)) = (At

j1, e1e
t) = n − 2,

then φ(At
j1) = At

σ(j),1, where σ is a permutation such that σ(1) = 1.
Replacing φ with φP, where P is an appropriate permutation matrix
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fixing e1, we may assume that φ(At
j1) = At

j1, j ≥ 2. Combining this
with (6), (5) we conclude that

(7) φ(eke
t
j) = eke

t
j, provided k = 1 or j = 1.

Now take any Akj, k, j ≥ 2. Then (φ(Akj), e1e
t
s) = (φ(Akj), φ(e1e

t
s)) =

(Akj, e1e
t
s) = δjs, and (φ(Akj), ese

t) = (φ(Akj), φ(ese
t)) = (Akj, ese

t) =
(−1)δks . These equalities imply that the j-th column is the special line
of φ(Akj), and, moreover, that φ(Akj) = Akj for k, j ≥ 2. Together
with (7) this means that φ is the identity mapping.

Remark 1
There are other preservers of B2, namely, any orthogonal transfor-

mation on M2(R) mapping the set {E11 ± E22, E12 ± E21} into B2 is
admissible. Such a collection of transformations will form a group iso-
morphic to B4. Note that group B2 coincides with I2(4), a particular
case of the groups I2(n) considered in Section 6

Remark 2
For n > 2, group L(Bn) differs from RE(Bn). Actually, one can

show that L(Bn) is not contained even in the normalizer of RE(Bn)
as follows. Consider the transformation ψ in L(Bn) so that ψ(A) is
obtained from A by multiplying its (1, 1) entry by −1. Let P be the
permutation matrix obtained from In by interchanging the first two
rows, and let φP (A) = PA for all A ∈ Mn(R). Then φP ∈ RE(Bn).
Observe, however, that the matrix E of all ones has rank one, while
(ψ−1φP ψ)(E) has rank 2 (if n ≥ 3). Thus, the mapping ψ−1φP ψ does
not preserve ranks, and therefore cannot lie in RE(Bn). Consequently,
ψ is not an element of the normalizer of RE(Bn).

5. Groups Dn

Matrix Realization
The group Dn consists of 2n−1n! signed permutation matrices in

Mn(R) with even numbers of −1’s. One can easily prove that D2 and
D3 coincide, respectively, with S2 × S2 (where S2 is the two-element
group) and A3. So, it is a standard convention (which we follow) to
consider Dn only for n ≥ 4.

Possible Inner Products
Let X ∈ Dn, X 6= I. Then (I,X) ∈ {0,±1, · · · ,±(n − 2)}. The

equality (I,X) = n− 2 holds if and only if X = I − (ei ± ej)(ei ± ej)
t

for some 1 ≤ i < j ≤ n.

Birkhoff Tensors
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Let w1 = (n − 2)e1 = (n − 2, 0, . . . , 0)t, w2 = e = (1, . . . , 1)t, w3 =
e− 2en = (1, . . . , 1,−1)t. Let S1 be the collection of rank one matrices
of the form Pw1w

t
2Q with P,Q ∈ Dn, S2 be the collection of rank

one matrices of the form Pw1w
t
3Q with P, Q ∈ Dn, and S3 be the

collection of rank one matrices of the form Pw2w
t
3Q with P, Q ∈ Dn.

Furthermore, let

St
i = {At : A ∈ Si} for i = 1, 2, 3.

Then we have

(n− 2)B(Dn) = S1 ∪ St
1 ∪ S2 ∪ St

2 ∪ S3 ∪ St
3.

Normalizers
To facilitate our study of Dn, we need a description of its normalizer

in O(n). First, recall that (see [2, 8] ) F4 is generated by the group B4

and the reflection

(8) R = 1/2




1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1


 = I − (1/2)eet.

The normalizer of F4 in O(4) is the group N(F4) generated by B4 and
the operator

(9) B =
1√
2

([
1 1
1 −1

]
⊕

[
1 1
1 −1

])
.

To see that this is indeed the case, note that the normalizer of F4 in
O(4) is a compact overgroup of F4. By [8], the only compact overgroups
of F4 are N(F4) and O(4). One can easily verify that B belongs to the
normalizer of F4, so N(F4) is in the normalizer of F4, and that O(4)
is not the normalizer of F4.

Lemma 5.1. If n > 4, the normalizer N(Dn) of Dn in O(n) is Bn.
The normalizer N(D4) of D4 in O(4) is F4.

Proof. Clearly, the normalizer N(Dn) of Dn in O(n) is a compact
group. One easily checks that N(Dn) contains Bn. By the results in
[8], if n 6= 4, then the only compact overgroup of Bn is O(n). Clearly,
O(n) is not the normalizer. So, N(Dn) = Bn.

If n = 4, then one can easily check that F4 ⊂ N(D4) (one only needs
to check that R ∈ N(D4)) but N(F4) 6⊆ N(D4) since B /∈ N(D4). It
is known [8] that the only compact overgroups of F4 are N(F4) and
O(4). Thus, N(D4) = F4.
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Let P,Q belong to the normalizer N(G) of G in the orthogonal group
O(V ), and PQ ∈ G, so X 7→ PXQ and X 7→ PX∗Q are transforma-
tions from RE(G). Since G is a normal subgroup in N(G) then we may

consider the factor group N(G)/G. Let X̃ denote the coset of X ∈ G

in N(G)/G. Then the condition PQ ∈ G can be rewritten as P̃ Q̃ = Ĩ ,

i.e., P̃−1 = Q̃.
Let us find out what pairs P, Q ∈ N(Dn) satisfy PQ ∈ Dn.

Lemma 5.2. Let P,Q ∈ Bn, n > 4. Then PQ ∈ Dn if and only if
P, Q ∈ Dn or P,Q ∈ Bn \Dn.

Proof. The group Bn is generated by Dn and one reflection T = I −
2en ⊗ en, T 2 = I, T ∈ N(Dn). Then each operator W ∈ Bn \Dn can
be written as W = Tg = hT, where g, h ∈ Dn. Therefore for any
P, Q ∈ Bn \Dn we always have PQ ∈ Dn. If only one of P, Q belongs
to Bn \Dn then obviously PQ /∈ Dn. If both P and Q belong to Dn

then obviously PQ ∈ Dn.

According to the definition, the group F4 is generated by B4 and
the reflection R = I − (1/2)e ⊗ e given by (8), or, in other terms, by
D4 and two reflections: T = I − 2e4 ⊗ e4 and R. Therefore, the factor

group F4/D4 is generated by two elements — T̃ and R̃. Let us cal-
culate the group F4/D4. Let H denote the subgroup in F4 generated
by the two reflections T, R. Since the angle between e4 and e is π/3,
then H is naturally isomorphic to A2, so it consists of 6 operators:
I, R, T, RT, TR, RTR(= TRT ), four of which (I, R, T,RTR) are invo-
lutions, and the other two (RT, TR) are not. Since T ∈ B4 \D4 and
R ∈ F4 \B4 then H ∩D4 = {I}, H ∩B4 = {I, T}. Therefore F4/D4 is
naturally isomorphic to H. These considerations lead to the following
result:

Lemma 5.3. Let P,Q belong to F4. Then PQ ∈ D4 i.e., P̃ Q̃ = Ĩ , if
and only if one of the following holds:

(i) P̃ = Q̃ ∈ {Ĩ , T̃ , R̃, R̃TR} (i.e., P̃ = Q̃ is an involution),

(ii) {P̃ , Q̃} = {T̃R, R̃T}.
Note that T (w2) = w3, T (w3) = w2, and T (w1) = w1. Also, for

n = 4, note that Rw1 = −w3, Rw2 = −w2, and since −I ∈ D4, we
conclude that w1 and w3 can be transformed one into another by an
operator −R from F4 \ D4, which fixes w2. Therefore the group F4

transitively acts on the set OrbD4 w1 ∪ OrbD4 w2 ∪ OrbD4 w3. This,
together with Lemmas 5.2, 5.3, implies the following result:

Lemma 5.4. The action of the group RE(Dn) on the set B(Dn) is
transitive. In particular:
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(a) if P,Q ∈ Dn, then PSiQ = Si, PSt
iQ = St

i for i = 1, 2, 3.
(b) if P, Q ∈ Bn\Dn, then PQ ∈ Dn, and PS1Q = S2, PS2Q = S1,

PS3Q = St
3, PSt

1Q = St
2, PSt

2Q = St
1, PSt

3Q = S3.

(c) if n = 4 then for P, Q ∈ R̃ we have PS1Q = S3, PS2Q = St
2,

PS3Q = St
1, PSt

1Q = S3, PSt
2Q = S2, PSt

3Q = S1.

Proof. Direct verification.

Theorem 5.5. Let n ≥ 4. Then

L(Dn) = L(B(Dn)) = RE(Dn).

In other words, the following conditions are equivalent for a linear
transformation φ of Mn(R).

(a) φ(Dn) = Dn.
(b) φ(B(Dn)) = B(Dn), equivalently, φ(env Dn) = env Dn.
(c) There exist P, Q belonging to Bn, if n ≥ 5, or to F4, if n = 4,

satisfying PQ ∈ Dn such that φ is of the form

A 7→ PAQ or A 7→ PAtQ.

Proof. The implication (c) ⇒ (a) follows from Lemma 1.1. The impli-
cation (c) ⇒ (b) follows from Lemma 5.4 and the fact that B(Dn) is
invariant under the transposition.

(a) ⇒ (c). Let φ belong to L(Dn). Then φ preserves the inner prod-
uct on Mn(R). Also, we may assume that φ(I) = I. With this assump-
tion, we show that there exists P ∈ Bn (or P ∈ F4 when n = 4) such
that φ is of the form A 7→ P tAP or A 7→ P tAtP .

Let R1 consist of the matrices Fij = I − (ei − ej)(ei − ej)
t for 1 ≤

i < j ≤ n, and R′
1 consist of the matrices F ′

ij = I − (ei + ej)(ei + ej)
t

for 1 ≤ i < j ≤ n.

Claim 1. {X ∈ Dn : (I, X) = n− 2} = R1 ∪R′
1.

Thus, φ(R1 ∪R′
1) = R1 ∪R′

1.
We may assume that φ(F12) = F12; otherwise, replace φ by a map-

ping of the form A 7→ P t
1φ(A)P1 for a suitable P1 ∈ Bn.

Claim 2. X ∈ R1∪R′
1 satisfies (F12, X) = n−3 if and only if X = Fij

or F ′
ij with (i) i = 1 and 3 ≤ j ≤ n, or (ii) i = 2 and 3 ≤ j ≤ n.

So, φ(F13) equals either Fij or F ′
ij, with i, j as in (i) or (ii). In case (i),

replace φ by a mapping A 7→ P t
2φ(A)P2, where P2 is an appropriately

signed (3, j) transposition, to fix F13. A (1, 2) transposition P3 can be
used to reduce case (ii) to case (i). Note that the property φ(F12) = F12

is preserved under these changes. Thus, we may assume that φ(F1j) =
F1j simultaneously for j = 2 and j = 3.
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Now, consider F1j for j = 4, . . . , n. Due to the orthogonality of φ,
Xj = φ(F1j) is such that (F12, Xj) = (F13, Xj) = n− 3.

Claim 3. {X ∈ R1∪R′
1 : (F12, X) = (F13, X) = n−3} = {F1,s, F

′
1,s : s =

4, . . . , n}.
Thus, Xj = F1,sj

or Xj = F ′
1,sj

for some sj ∈ {4, . . . , n}. But then

(similarly to case (i) for j = 3 above) the transformation φ can be
replaced by A 7→ P t

j φ(A)Pj (with Pj being a suitably signed (j, sj)
transposition) in such a way that F1j becomes a fixed point of φ. Since
these replacements do not change the values φ(F1k) for k < j, imple-
menting them consequently we achieve the property

(10) φ(Fij) = Fij; j = i + 1, . . . , n

for i = 1.
Denote by Bijk the n×n permutation matrices corresponding to the

3-cycles (ijk). Let R2(⊂ Dn) stand for the set of all such matrices,
and consider X = φ(Bijk). Due to (10),

(11) (Fij, X) = (Fik, X) = n− 2

for i = 1.

Claim 4. For j 6= k distinct form 1,

{X ∈ Dn : (I, X) = n−3, (F1j, X) = (F1k, X) = n−2} = {B1jk, B1kj}.

We may assume that

(12) φ(B123) = B123;

otherwise, replace φ by a mapping of the form A 7→ φ(A)t. For k > 3,
the scalar product (B123, B12k) = n− 3 is different from (B123, B1k2) =
n−4. Thus, condition (12) automatically implies that φ(B12k) = B12k,
k = 3, . . . , n. Observe now that (B12k, B1jk) = n − 3, (B12k, B1kj) =
n − 4 for j, k 6= 2. Hence, φ(B1jk) must be different from B1kj. The
only remaining option is

(13) φ(Bijk) = Bijk; j, k = i + 1, . . . , n, j 6= k

for i = 1. Note also that all the matrices Fij are symmetric so that
property (10) for i = 1 still holds.

We now return to matrices Fij, with arbitrary i.

Claim 5. For i 6= j and distinct form 1,

{X ∈ R1∪R′
1 : (F1i, X) = (F1j, X) = n−3, (B1ij, X) = n−2} = {Fij}.
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Applying Claim 5 to φ(F2j) = X, we conclude that (10) holds for all
i. But then (11) along with

(B1jk, Bijk) = n− 3 6= (B1jk, Bikj) = n− 4

(for 1, i, j, k being mutually distinct) show that (13) holds for all ad-
missible i. In other words,

(14) φ(X) = X for all X ∈ R1 ∪R2.

Since φ(R1 ∪R′
1) = R1 ∪R′

1, we conclude from (14) that in particular
φ(R′

1) = R′
1. Observe that

(F ′
ij, Fpq) =

{
n− 4 if {p, q} ∩ {i, j} = ∅ or {p, q} = {i, j}
n− 3 otherwise

.

If n > 4, then for any two different pairs {i, j} and {i′, j′} it is possi-
ble to find {p, q} disjoint with {i, j} and having exactly one common
element with {i′, j′}. Since φ preserves inner product and elements of
R1, the property φ(R′

1) = R′
1 can be strengthened to

(15) φ(X) = X for all X ∈ R′
1.

For n = 4, we can at this point derive only a weaker conclusion

φ(F ′
ij) = F ′

ij or φ(F ′
ij) = F ′

i′,j′

with {i′, j′} being a complement of {i, j} to {1, 2, 3, 4}. However, in
this case we have yet another degree of freedom at our disposal, namely,
the replacement of φ by A 7→ Rφ(A)R with R given by (8). It is easy
to check that RXR = X for all X ∈ R1 ∪ R2 and RF ′

ijR = F ′
i′,j′ .

Hence, by using this replacement we can fix one of the elements of R′
1

while keeping (14) valid. Suppose therefore that φ(F ′
12) = F ′

12. Then
of course φ(F ′

34) = F ′
34 as well. To prove (15) in the case n = 4, it

remains to show that

(16) φ(F ′
13) = F ′

13, φ(F ′
14) = F ′

14.

To this end, we introduce the set R′
2 of all signed permutation matrices

B′
ijk corresponding to 3-cycles (ijk) and having −1 in the positions (ij)

and (jk).

Claim 6. R2 ∪R′
2 = {X ∈ Dn : (I, X) = n− 3}.

Hence, property (14) implies φ(R′
2) = R′

2. Observe now that, for
n = 4, (Fpq, B

′
ijk) = 2 if and only if {p, q} = {i, k}. Hence, φ(B′

ijk) is
either B′

ijk itself or B′
isk, where s ∈ {1, 2, 3, 4} is different from i, j, k.

But

(B′
123, F

′
12) = (B′

124, F
′
12) = 2 6= 0 = (B′

134, F
′
12) = (B′

143, F
′
12).
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Thus, φ(F ′
12) = F ′

12 implies that φ(B′
123) = B′

123, φ(B′
124) = B′

124. Now
(16) follows from yet another simple computation showing that

(B′
124, F

′
13) = (B′

123, F
′
14) = 0 6= 2 = (B′

124, F
′
24) = (B′

123, F
′
23).

So, both for n = 4 and n > 4 we may suppose that (15) holds along
with (14). Since the set R1 ∪ R′

1 ∪ R2 spans Mn(R), the only linear
transformation φ satisfying (14), (15) is the identity transformation.

Next, we turn to (b) ⇒ (c). Let wj, Sj, and St
j (j = 1, 2, 3) be

defined as before.
First we show that (probably, after some modifications, replacing φ

by the mapping

(17) A 7→ Pφ(A)Q or A 7→ XPφ(A)tQ,

P, Q in the normalizer of Dn, PQ ∈ Dn) we may suppose that

(18) φ(S3 ∪ St
3) = S3 ∪ St

3,

and

(19) φ(A1) = A1, where A1 = w1w
t
2.

If n > 4, property (18) holds (with no modifications of φ needed),
because of the following

Claim 7. S3 ∪ St
3 consists exactly of all A ∈ B(Dn) for which there

exist B ∈ B(Dn) such that

(A,B) =

{
1 if n is odd,

4 if n is even.

Since φ preserves the inner product and leaves B(Dn) invariant, it
therefore must leave S3 ∪ St

3 invariant as well. From (18) we conclude
that also

(20) φ(S1 ∪ S2 ∪ St
1 ∪ St

2) = S1 ∪ S2 ∪ St
1 ∪ St

2.

In particular, X1 = φ(A1) is a matrix of the form Pw1w
t
iQ or Pwiw

t
1Q

for i = 2, 3 and P, Q ∈ Dn. We can then replace φ by a mapping of the
form (17) with P, Q ∈ Bn so that PQ ∈ Dn and the resulting mapping
fixes A1.

If n = 4, property (18) does not necessarily hold for the original
mapping φ, and X1 = φ(A1) can be any element of 2B(D4). However,
if X1 ∈ S1 ∪ S2 ∪ St

1 ∪ St
2, the same reasoning as above can be applied

to achieve (19). Consider the remaining possibility X1 = Pw2w
t
3Q or

X = Pw3w
t
2Q for some P, Q ∈ D4. We may assume that X1 = w3w

t
2

by a suitable modification of φ of the form (17). Now replace φ by a
mapping of the form A 7→ Rφ(A)R, with R given by (8). One can check
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that the resulting map will send w1w
t
2 to matrix of the form Xw1w

t
2Y

for some X,Y ∈ D4. Hence, we are back to the previous case, and we
can further modify φ so that the resulting map will again fix A1. So,
without loss of generality we may suppose that (19) holds.

We will now make use of

Claim 8. {Y ∈ 2B(D4) : (A1, Y ) = 8} = {Bj = w1(e − 2ej)
t : j =

1, . . . , 4}.
Hence, condition (19) guarantees that φ maps the set {Bj}4

j=1 onto
itself. Replacing φ by X 7→ φ(X)P with an appropriate permutation
P , we may achieve the property φ(Bj) = Bj (j = 1, . . . , 4) while still
having (19). But then (18) holds as well, because of

Claim 9. S3 ∪ St
3 = {Y ∈ 2B(D4) : Y ⊥ {A1, B1, B2, B3, B4}}.

So, both for n = 4 and for n > 4 we may achieve (18) and (19).
Since (20) holds along with (18), the mapping φ satisfying this prop-

erty is a B(Bn) preserver. Due to Theorem 4.1, it has the form (2).
In the next step of the proof we show that the Schur multiplier S in
this representation can be eliminated. It suffices to consider the case of
the first formula in (2); the second one can then be covered by passing
from φ to φt.

We use the standard notation X[ij] for the 2× 2 block

[
xii xij

xji xjj

]
of

an n× n matrix X. Suppose that the rank of S is at least two. Then
there exist i, j such that det S[ij] 6= 0. But then det(S◦(w2w

t
3)[ij]) 6= 0,

that is, the rank of the matrix S ◦ (w2w
t
3) is also at least two. Since

S ◦ (w2w
t
3) is in the image of S3 ∪ St

3 under the mapping (2), this is
a contradiction with (18). Hence, S is a rank one matrix, that is,
S = uvt, where u = (u1, . . . , un)t, v = (v1, . . . , vn)t and uj, vj = ±1
for j = 1, . . . , n. It remains to observe that (uvt) ◦ (PZQ) = P1ZQ1,
where

P1 = diag[u1, . . . , un]P, Q1 = Q diag[v1, . . . , vn] ∈ Bn.

The last step is to show that P1Q1 ∈ Dn. To this end, recall property
(19), according to which P1A1Q1 = A1. This is only possible if the signs
of all non-zero entries of Q1 are the same. Without loss of generality
(changing the sign of both P1 and Q1 if necessary) we may suppose that
Q1 is a permutation matrix. Consider then P1w2w

t
3Q1. This matrix

lies in S3 ∪ St
3 due to (18). But this is only possible if P1 ∈ Dn. Then

P1Q1 ∈ Dn as well.
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6. Groups I2(n)

Matrix Realization
Group I2(n) is the dihedral group, i.e., the group of symmetries of

a regular n-side convex polygon. So, we always assume that n ≥ 3.
Assuming that a vertex of this n-side convex polygon is on the positive
x-semi-axis, we arrive to the following matrix realization.

Let

Rn =

(
cos(2π/n) sin(2π/n)
− sin(2π/n) cos(2π/n)

)
, D =

(
1 0
0 −1

)
.

Then I2(n) = Rotn ∪Refln, where

Rotn = {Rk
n : 0 ≤ k < n}

is the set of rotations in I2(n), and

Refln = {DX : X ∈ Rotn} = {Rk
2nDR−k

2n : 0 ≤ k < n}
is the set of reflections in I2(n).

Birkhoff Tensors
Let w1 = (1, 0)t, w2 = (cos π/n, sin π/n)t. Then

(cos
π

n
)B(I2(n)) =

{
Pw1w

t
2Q, Qw2w

t
1P : P, Q ∈ I2(n)

}
.

Possible inner products
Let X ∈ I2(n), X 6= I. Then

(I, X) ∈ {2 cos
2kπ

n
: k = 1, . . . , n− 1}.

Normalizers

Lemma 6.1. The normalizer N(I2(n)) of I2(n) in O(2) coincides with
I2(2n).

Proof. Rot2n and D are obviously in N(I2(n)), the reflection D and
rotations from Rot2n generate the whole I2(2n), so I2(2n) ⊂ N(I2(n)).
Every operator from O(V ) is either a rotation R or a reflection DR. If
a rotation R is in N(I2(n)) then RDR∗ ∈ I2(n), therefore R ∈ Rot2n .
If a reflection DR is in N(I2(n)) then (DR)∗D(DR) ∈ I2(n), therefore
R ∈ I2(2n). So, N(I2(n)) = I2(2n).

Linear Preservers
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Theorem 6.2. Let n ≥ 3. Then

L(I2(n)) = L(B(I2(n))) = RE(I2(n)).

In other words, the following conditions are equivalent for a linear
transformation φ of M2(R):

(a) φ(I2(n)) = I2(n).
(b) φ(B(I2(n))) = B(I2(n)).
(c) There exist P,Q ∈ I2(2n) satisfying PQ ∈ I2(n) such that φ is

of the form

A 7→ PAQ or A 7→ PAtQ.

Proof. By (1), (a) and (b) are equivalent. Clearly, (c) implies (a). It
remains to prove that (a) implies (c).

By Lemma 2.1, if φ(I2(n)) = I2(n), then φ preserves the inner prod-
uct on M2(R). We may assume that φ(I) = I.

Claim 1. {X ∈ I2(n) : (I, X) = 2 cos(2π/n)} = {Rn, R
t
n}.

We may assume that φ(Rn) = Rn; otherwise, replace φ by the
mapping A 7→ φ(A)t. It follows from Claim 1 that X ∈ I2(n) sat-
isfies (Rn, X) = (Rn, R

2
n) if and only if X = R2

n or X = I. Since
φ(I) = I, φ(Rn) = Rn then φ(R2

n) = R2
n. Similarly, we get that φ fixes

the whole set Rotn . Therefore, φ(Refln) = Refln .
The transformations X 7→ RXRt for R ∈ Rot2n fix every element of

Rotn, so we may assume that φ(D) = D. Applying Claim 1 once again,
we observe that X ∈ Refln satisfies (D, X) = (D, DRn) if and only if
X = DRn or X = DRn−1

n . Invoking the transformation X 7→ RnXRt
n

if necessary, we may assume that φ(DRn) = DRn.
Now, using the fact that (I,X) = (I, φ(X)) and (Rn, X) = (Rn, φ(X))

for each X ∈ I2(n), we see that the modified φ satisfies φ(X) = X for
all X ∈ I2(n). The result follows.

7. Final remarks

It would be interesting to figure out the structure of L(G) for ex-
ceptional finite irreducible Coxeter groups. The cases G = F4 and
H3 can be handled by methods similar to those used in this paper.
The case G = H4 has some complication, namely, its Coxeter graph
is non-branching, but it has not yet been proven (though seems very
probable) that Extr G◦ = B(G).

The cases of the other three exceptional groups with branching graphs
— G = E6,E7, and E8 — seem to be much more difficult. In these cases
Extr G◦ 6= B(G), and it is possible that L(G) differs from L(B(G)). It is
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very unlikely that the group RE(G) acts transitively on B(G) in these
cases.

Our proofs in this paper are rather computational. It would be nice
to find a unified approach.
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