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Abstract. For an n×n matrix A, let M(A) be the smallest possible constant
in the inequality Dp(A) ≤ M(A)Rp(A). Here p is a point on the smooth
portion of the boundary ∂W (A) of the numerical range of A, Rp(A) is the
radius of curvature of ∂W (A) at this point, and Dp(A) is the distance from
p to the spectrum of A. We show that M(A) ≤ n/2 and that there exist A
with M(A) ≥ n

2
sin π

n
. We also describe a class of matrices with M(A) ≤ 1

(including, of course, all 2× 2 matrices).

1. Introduction

Let A be an n×n matrix with complex entries: A ∈ Cn×n. The numerical range
of A is defined as W (A) = {〈Ax, x〉 : x ∈ Cn, ‖x‖ = 1}, where 〈., .〉 and ‖.‖ are
the standard scalar product and norm on Cn, respectively. There is an extensive
literature on the properties of W (A), starting with the classical papers by Toeplitz
[14] and Hausdorff [4]. All the unreferenced properties of the numerical range in
this paper can be found in Chapter 1 of [5]; see also [3].

It is well known that W (A) is a convex compact subset of C (containing the
spectrum σ(A) of A) with a piecewise analytic boundary ∂W (A). Hence, for all
but finitely many points p ∈ ∂W (A), the radius of curvature Rp(A) of ∂W (A) at
p is well-defined. By convention, Rp(A) = 0 if p is a corner point of W (A), and
Rp(A) = ∞ if p lies inside a flat portion of ∂W (A).

Let Dp(A) denote the distance from p to σ(A), and let M(A) be the smallest
constant such that

(1) Dp(A) ≤ M(A)Rp(A)

for all p ∈ ∂W (A) where Rp(A) is defined. By Donoghue’s theorem, Dp(A) = 0
whenever Rp(A) = 0. Therefore, M(A) = 0 for all convexoid matrices A, that is,
for matrices with polygonal numerical ranges. For non-convexoid A,

M(A) = sup
Dp(A)
Rp(A)

where the supremum in the right hand side is taken along all points p ∈ ∂W (A)
with finite non-zero curvature.
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Computation of M(A) for arbitrary A is an interesting open problem. In this
paper, we find upper and lower bounds for

Mn = sup{M(A) : A ∈ Cn×n},
namely,

(2)
n

2
sin

π

n
≤ Mn ≤ n

2
.

Section 3 contains the proof of the upper bound in (2).This proof rests on a number
of auxiliary results, found in Section 2. We believe that some of these results may
be of independent interest.

For n = 2, the upper and lower bounds in (2) coincide, so that M2 = 1. This
value of M(A) is assumed on 2 × 2 matrices A with circular W (A), that is, on
non-normal A with coinciding eigenvalues. In Section 4, we give a description of
some higher dimensional matrices A where M(A) = 1, as well as some elementary
computations of the exact value of M(A) for all 2×2 matrices A. Such computations
provide an alternative proof of the equality M2 = 1. In the last section, we derive
explicit formulas for Dp(A) and Rp(A) for some unicellular n× n matrices A. We
use these formulas to obtain the lower bound in (2). As a byproduct, the value
of M(A) is computed for a unicellular 3 × 3 matrix A with a flat portion on the
boundary of its numerical range.

For n ≥ 3, we do not have an exact value Mn. In fact, it is not even clear
whether a sequence Mn is bounded. The question whether there exists a universal
constant M such that

Dp(A) ≤ MRp(A) for all square matrices A

remains open. This question, posed by Roy Mathias in January of 1997 (see the
Matrix Inequalities in Science and Engineering web page
http://www.wm.edu/CAS/MINEQ/topics/970103.html), served as a starting point
for this research. If such a constant M exists, it follows from (2) that its value
cannot be smaller than π/2.

Throughout the paper, we will use the standard notation XR = 1
2 (X + X∗) and

XJ = 1
2i (X − X∗) for the real and imaginary part of any square matrix X. We

denote the (j, k)-entry of X by Xjk; the matrix obtained from X by deleting its
j-th row and k-th column by X[jk]; the transposed matrix of X by XT ; and the
upper half plane {z ∈ C : Im z ≥ 0} by C+.

2. Auxiliary results

Recall that a matrix A is unitarily reducible if it is unitarily similar to a direct
sum A1 ⊕ · · · ⊕Ak of (smaller in size) matrices A1, . . . , Ak, k ≥ 2:

(3) A = U∗(A1 ⊕ · · · ⊕Ak)U

for some unitary matrix U .

Lemma 2.1. Under the condition (3), M(A) ≤ max
1≤j≤k

M(Aj).

Proof. The numerical range of A is the convex hull of the numerical ranges of the
blocks Aj :

W (A) = conv {W (A1), . . . , W (Ak)} .
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Hence, ∂W (A) consists of portions of ∂W (Aj) connected by the straight line seg-
ments. It remains to observe that, for p ∈ ∂W (Aj) ∩ ∂W (A),

dist(p, σ(A)) ≤ dist(p, σ(Aj)) ≤ M(Aj)Rp(Aj) ≤ M(Aj)Rp(A).

¥

The result of Lemma 2.1 is not sharp. For example, a general convexoid matrix
A is unitarily similar to a direct sum of a normal matrix A1 with an arbitrary
matrix A2 such that W (A2) ⊂ W (A1). In this case M(A) = M(A1) = 0 while
M(A2) can be positive.

Lemma 2.2. Let A ∈ Cn×n be such that 0 ∈ ∂W (A) and W (A) lies entirely in the
upper half plane. Then A is unitarily similar to a matrix of the form

(4)




0 ε 0 . . . 0
ε
0
...
0

B




,

where ε ≥ 0 and B is an (n− 1)× (n− 1) matrix with BJ ≥ 0.

Proof. Choose a unit vector e1 ∈ Cn such that 〈Ae1, e1〉 = 0; this is possible since
0 ∈ W (A). Let e2 = ‖Ae1‖−1Ae1 if Ae1 6= 0, or an arbitrary unit vector orthogonal
to e1 otherwise. Then extend {e1, e2} to an orthonormal basis {e1, . . . , en} of
Cn. The matrix C with the entries Cjk = 〈Aek, ej〉 (j, k = 1, . . . , n) is unitarily
similar to A. Since 〈Ae1, ej〉 = ‖Ae1‖〈e2, ej〉, the first column of C is indeed as
in (4), with ε = ‖Ae1‖ ≥ 0. As was shown in [6, Lemma 3.1], if x is a vector
such that 〈Ax, x〉 = 0 ∈ ∂W (A) and y is any vector perpendicular to x, then
〈Ax, y〉 = 〈Ay, x〉. Letting x = e1 and y = ej (j 6= 1) one at a time, we see that
〈Aej , e1〉 = 〈Ae1, ej〉. In other words, the first row of C also is as in (4).

Finally, the numerical range of the matrix B = C[11] lies in W (C) = W (A), and
therefore in C+. This condition is equivalent to BJ being non-negative. ¥

Observe (though we will not use this) that the converse to Lemma 2.2 is also true:
if C has the form (4), then CJ = {0} ⊕ BJ , so that CJ ≥ 0 and W (C) = W (A)
lies in C+. On the other hand, any diagonal entry of C lies in W (C), so that
0 = C11 ∈ W (A).

If ε > 0 and BJ > 0, then the radius of curvature R0(A) can be computed using
the following Fiedler’s result [1].

Lemma 2.3. Let A ∈ Cn×n, and let z be a unit vector corresponding to a boundary
point p = 〈Az, z〉 of W (A). Also let ux+vy+w = 0 be an equation of the supporting
line of W (A) at the point p. If −w is a simple eigenvalue of P = uAR + vAJ , then
∂W (A) is smooth in the neighborhood of p, and its radius of curvature at this point
equals

(5) Rp(A) =
2√

u2 + v2
|〈(P + wI)+Qz,Qz〉|.

Here Q = vAR − uAJ , and X+ stands for the Moore-Penrose inverse of X.
For the matrix (4) one may choose u = 0, v = 1, w = 0 to obtain P + wI = AJ ,

Q = AR. Moreover, z = [1, 0 . . . , 0]T , and therefore Qz = [0, ε, 0, . . . , 0]T . If BJ is
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strictly positive, then zero is a simple eigenvalue of AJ , its Moore-Penrose inverse
is (AJ)+ = 0⊕ (BJ )−1, and formula (5) yields

R0(A) = [0, ε, 0, . . . , 0]




0 0 0 . . . 0
0
0
...
0

(BJ )−1







0
ε
0
...
0




= 2ε2(B−1
J )11.

Hence, the next result:

Lemma 2.4. Let A be of the form (4), with ε > 0 and BJ > 0. Then the origin
lies on the smooth portion of ∂W (A), and

(6) R0(A) = 2ε2(B−1
J )11 = 2ε2

detBJ [11]
detBJ

.

We will use (6) to find the upper bound for D0(A)/R0(A) when A is of the form
(4) with ε > 0 and BJ > 0. Before we do this, we need two additional auxiliary
results.

Lemma 2.5. Let X ∈ Cn×n be such that XR > 0. Then |(X−1)11| ≤ (X−1
R )11.

Proof. Rewrite X = XR + iXJ as

X = X
1/2
R (I + iX

−1/2
R XJX

−1/2
R )X1/2

R ,

where X
1/2
R is the positive square root of XR. Then X−1 = X

−1/2
R Y X

−1/2
R , where

Y = (I + iX
−1/2
R XJX

−1/2
R )−1, and for any non-zero f ∈ Cn:

(7)
〈X−1f, f〉
〈X−1

R f, f〉 =
〈Y g, g〉
‖g‖2 ∈ W (Y ),

where g = X
−1/2
R f . The numerical range of Y −1 = I + iX

−1/2
R XJX

−1/2
R (and

therefore its spectrum) lies on the vertical line x = 1. Due to the spectral mapping
theorem, σ(Y ) lies on the circle C = {z : |z−1/2| = 1/2}. Since Y −1 (and therefore
Y ) is normal, the numerical range W (Y ) is the convex hull of σ(Y ), that is, a
polygon inscribed in C. In particular, |ζ| ≤ 1 for all ζ ∈ W (Y ). From this and
(7) it follows that |〈X−1f, f〉| ≤ 〈X−1

R f, f〉 for all f ∈ Cn. It remains to choose
f = [1, 0 . . . , 0]T . ¥

Recall that the spectral radius ρ(X) and the numerical radius ω(X) are defined
for X ∈ Cn×n as ρ(X) = max{|λ| : λ ∈ σ(X)} and ω(X) = max{|λ| : λ ∈ W (X)},
respectively.

It is clear that ρ(X) ≤ ω(X) for any matrix X, and simple examples show that
the quotient ω(X)/ρ(X) can be made arbitrarily big by choosing X appropriately.
However, this quotient remains bounded under certain additional conditions on X.

Lemma 2.6. Let X ∈ Cn×n be such that 0 is not an interior point of W (X). Then
ω(X)/ρ(X) ≤ n.
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Proof. By scaling and rotating X, we may assume that XR ≥ 0 and ρ(X) = 1. We
may also use unitary similarity to put X in upper triangular form




λ1 x12 . . . x1n

. . .
...

. . . xn−1,n

λn




.

The condition XR ≥ 0 implies that
[
λj xjk

0 λk

]

R

≥ 0 for all j, k = 1, . . . , n. But

then |xjk| ≤
√

4Re λj Re λk ≤ 2ρ(X) = 2.
It is well known that for any two matrices U and V condition |ujk| ≤ vjk (j, k =

1, . . . , n) implies ω(U) ≤ ω(V ) (see [2, p. 269] for the case |ujk| = vjk). Hence,
ω(X) ≤ ω(Z), where Z is an upper triangular n× n matrix with

(8) zjk =

{
1 if j = k,

2 if j < k
.

It is also known [2, Theorem 2.1] that for any entry-wise non-negative matrix A,
ω(A) = ρ(AR). Thus ω(Z) = ρ(J), where J = ZR is the n× n matrix with all the
entries equal 1. The spectrum of J consists of two eigenvalues: 0 (of multiplicity
n− 1) and a (simple) eigenvalue n, so that ρ(J) = n. We then see that

ω(X)
ρ(X)

= ω(X) ≤ ω(Z) = ρ(J) = n.

¥

Observe that the spectrum of the matrix Z is the singleton {1} and that W (Z)
lies in the upper half plane. Therefore, the upper bound n for ω(X)/ρ(X) under
the conditions of Lemma 2.6 is sharp.

3. Upper bound

For a given A ∈ Cn×n, consider its representation (3) with the biggest possible k.
It is well known that the matrices Aj in such a representation are defined uniquely
up to order and unitary similarities. Denote the biggest size of Aj by u(A). Of
course, u(A) = 1 if and only if A is normal; u(A) = n if and only if A is unitarily
irreducible.

Theorem 3.1. For any n× n matrix A, M(A) ≤ 1
2u(A).

Proof. ¿From Lemma 2.1, it suffices to prove a (formally) weaker inequality M(A) ≤
n/2, that is,

Dp(A) ≤ n

2
Rp(A)

for any A ∈ Cn×n and an arbitrary point p located on a smooth portion of ∂W (A).
Considering Ã = α(A − pI) in place of A, we may assume that p = 0. Choosing
an appropriate unimodular constant α, we may also assume that W (A) lies in C+.
Then from Lemma 2.2, it remains only to show that for all n×n matrices A of the
form (4) with the origin located on the smooth portion of ∂W (A),

(9) D0(A) ≤ n

2
R0(A).
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If the matrix A is singular, then D0(A) = 0, and the claimed inequality holds
trivially. Therefore, we need only consider the case where A is invertible. This
implies, in particular, that ε > 0. The numerical range A lies in C+ (since AJ =
0 ⊕ BJ ≥ 0) which implies W (A−1) ⊂ C+. Hence, 0 is not an interior point of
W (A−1). Applying Lemma 2.6 to X = A−1 we find that

D0(A) = (ρ(A−1))−1 ≤ n

ω(A−1)
.

Suppose for a moment that BJ is strictly positive (and not just non-negative, as
guaranteed by Lemma 2.2). Then the matrix B is invertible, and

(A−1)11 =
det B

det A
6= 0.

Using an obvious inequality |(A−1)11| ≤ ω(A−1), we further obtain:

D0(A) ≤ n
|detA|
|detB| = nε2

|detB[11]|
|detB| = nε2|(B−1)11|.

¿From this and (6) it follows that

D0(A)
R0(A)

≤ n

2
|(B−1)11|
|B−1

J )11|
=

n

2
|(X−1)11|
|X−1

R )11|
,

where X = −iB. Since XR = BJ , Lemma 2.5 implies the desired inequality under
the additional restriction BJ > 0.

To remove this restriction, we reason as follows. Let A be of the form (4) with
ε > 0 and a singular non-negative BJ . Consider a family of matrices A(δ) for which
B in (4) is changed to B(δ) = B+iδI, δ ≥ 0. Then, of course, B(δ)J = BJ +δI > 0
for δ > 0. Let y = yδ(x) be the equation of ∂W (A(δ)) in the neighborhood Ω of
x = 0. Obviously, yδ(0) = y′δ(0) = 0, and y′′δ (0) = 1/R0(A(δ)) (the differentiability
of yδ as a function of x for δ > 0 follows from Lemma 2.3; for δ = 0 we simply
assume that this is the case because we are only interested in the smooth portions
of ∂W (A)). Fix x ∈ Ω and δ > 0. Since x + iyδ(x) ∈ W (A(δ)), there exists a
unit vector z ∈ Cn for which 〈A(δ)z, z〉 = x + iyδ(x). But then Re〈Az, z〉 = x, and
y0(x) ≤ Im〈Az, z〉 ≤ yδ(x). By Taylor’s expansion,

0 ≤ yδ(x)− y0(x) =
1
2

(y′′δ (ξ)− y′′0 (ξ)) x2

for some intermediate value ξ ∈ (0, x). Dividing both sides by x2 and taking the
limit as x → 0, we then see that y′′δ (0) ≥ y′′0 (0). Hence,

D0(A)
R0(A)

≤ D0(A)
R0(A(δ))

=
D0(A)

D0(A(δ))
· D0(A(δ))
R0(A(δ))

≤ n

2
D0(A)

D0(A(δ))

(in the last step, we use the inequality (9) for matrices A(δ) with strictly positive
B(δ)J). Take the limit as δ → 0 and observe that D0(A(δ)) → D(A) due to the
continuity of the eigenvalues as functions of the matrix’s entries. ¥

4. Matrices with M(A) ≤ 1

Theorem 3.1 shows that M(A) ≤ 1 for any matrix A with u(A) = 2. This, of
course, also follows from Lemma 2.1 and the explicit description of W (A) for 2× 2
matrices A. In fact, the exact value of M(A) for such matrices can be computed.
For the sake of completeness, we include the result.
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Theorem 4.1. Let A be a 2 × 2 matrix with the eigenvalues λ1, λ2, and let s =(
trace(A∗A)− |λ1|2 − |λ2|2

)1/2. Then M(A) = 0 if s = 0 and

(10) M(A) =
s√

s2 + |λ1 − λ2|2
otherwise.

Proof. The matrix A is normal if and only if s = 0; in this case M(A) = 0.
For s > 0, the matrix A is unitarily irreducible, and W (A) is an ellipse with minor

axis 2b = s and major axis 2a =
√

s2 + |λ1 − λ2|2. The foci are, of course, located
at the eigenvalues. For a current point p ∈ ∂W (A), let x denote the distance from
p to the closest eigenvalue. Then a− c ≤ x ≤ a, where c =

√
a2 − b2 = 1

2 |λ1 − λ2|,
and the distance from p to the other eigenvalue is 2a− x. The radius of curvature

at the point p is
(x(2a− x))3/2

ab
(see, for example, [13]), so that

M(A) = max{f(x) : a− c ≤ x ≤ a},
where

f(x) =
abx

x3/2(2a− x)3/2
=

ab

x1/2(2a− x)3/2
.

Elementary calculus shows that max{f(x) : a − c ≤ x ≤ a} = f(a) =
b

a
, which is

exactly the right hand side of (10). ¥

To describe a more general situation in which M(A) ≤ 1, recall the definition of
an associated curve [8], see also [7]. For any A ∈ Cn×n, the equation

det(uAR + vAJ + wI) = 0,

with u, v, w viewed as homogeneous line coordinates, defines an algebraic curve of
class n. The real part of this curve, denoted by C(A), is the associated curve of
A. The n real foci of C(A) are the eigenvalues of A, and the convex hull of C(A)
coincides with W (A).

Theorem 4.2. Let A ∈ Cn×n be such that its associated curve consists only of
points and ellipses. Then M(A) ≤ 1.

Proof. Any point p located on the smooth portion of ∂W (A) lies on one of the
ellipses E constituting C(A). Hence, the distance from p to one of the foci of E
does not exceed Rp(A). It remains to recall that the foci of E are at the same time
foci of C(A), that is, belong to σ(A). ¥

It is interesting to observe that there exist matrices A with u(A) > 2 satisfying
Theorem 4.2. An example of a unitarily irreducible 4 × 4 matrix A where C(A)
is a union of two circles (once circle does not contain the other) was given in [9].
From [10], all (0, 1)-matrices with at most one 1 in each row and column have C(A)
consisting of points and concentric circles, and therefore also satisfy Theorem 4.2.

5. Lower bound

In this section, we consider an alternative approach to computing the quotient
Dp(A)/Rp(A), which leads to some lower bounds for Mn. For any A ∈ Cn×n, let
λ(θ) denote the maximum eigenvalue of AR cos θ + AJ sin θ. It is well known that
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λ is an analytic function of θ (possibly except for some isolated points), and that
∂W (A) admits a parametric representation

(11)
x(θ) = λ(θ) cos θ − λ′(θ) sin θ,

y(θ) = λ(θ) sin θ + λ′(θ) cos θ

(again, with possible exception of finitely many points). The radius of curvature of
∂W (A) at p = (x(θ), y(θ)) equals

(12) R(θ) = λ′′(θ) + λ(θ)

(see, i.e., [11], where formulas (11) and (12) are mentioned explicitly).
¿From Section 3, it seems natural to consider matrices of the form A = Z−1,

where Z is an n × n triangular matrix given by (8), as possible candidiates for
producing large Dp(A)/Rp(A). A direct computation shows that Z−1 = V ZV ,
where V = diag[1,−1, . . . , (−1)n]. Hence, Z−1 is unitarily similar to Z, and we let
A = Z. Then

(AR cos θ + AJ sin θ − λI)jk =





cos θ − λ if j = k

cos θ − i sin θ if j < k

cos θ + i sin θ if j > k

.

¿From [12, Problem 392] it follows that

det(AR cos θ + AJ sin θ − λI) =

(−1)n (cos θ − i sin θ)(λ + i sin θ)n − (cos θ + i sin θ)(λ− i sin θ)n

2i sin θ
.

Hence,

λ(θ) = sin θ cot
θ

n
, θ ∈ [−π, π]

with λ(0) = n defined by continuity. Consequently,

λ′(θ) = cos θ cot
θ

n
− 1

n
sin θcsc2 θ

n
,

and

λ′′(θ) = − sin θ cot
θ

n
− 2

n
cos θ csc2 θ

n
+

2
n2

cos
θ

n
sin θ csc3 θ

n
.

Formulas (11) and (12) yield

(13) x(θ) =
1
n

sin2 θ csc2 θ

n
, y(θ) = cot

θ

n
− 1

n
sin θ cos θ csc2 θ

n

and

(14) R(θ) =
2
n2

(
sin θ cos

θ

n
− n cos θ sin

θ

n

)
csc3 θ

n
,

respectively.
The value θ = π corresponds to the point i cot π

n located at the “flattening” of
∂W (A). The distance from this point to the (only) eigenvalue 1 of A is D(π) =
csc π

n , while R(π) = 2
n csc2 π

n . Hence, D(π)/R(π) = n
2 sin π

n , which leads to the
following

Theorem 5.1. Mn ≥ n

2
sin

π

n
.
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When θ → 0 in formulas (13), (14), we see that x(0) = n, y(0) = 0, R(0) =
2(n2−1)

3n . So,
D(0)
R(0)

=
3n(n− 1)
2(n2 − 1)

=
3n

2(n + 1)
.

For n = 2, this quotient is the same as D(π)/R(π) = 1. This is not surprising: the

matrix A =
[
1 2
0 1

]
has a circular numerical range W (A), so that D(θ) ≡ R(θ) (=

1). Of course, formulas (13) and (14) give the same conclusion.
For n ≥ 3, however,

3n

2(n + 1)
<

n

2
sin

π

n
.

We suspect that for matrices under consideration, supθ D(θ)/R(θ) is assumed at
θ = π. The next statement confirms this conjecture for n = 3.

Theorem 5.2. Let

(15) A =




λ x y
0 λ z
0 0 λ




with |x| = |y| = |z| 6= 0. Then M(A) =
3
√

3
4

.

Proof. As was shown in [7], the associated curve C(A) for the matrix (15) is a
cardioid. By scaling, rotating and shifting A we may without loss of generality
suppose that this cardioid is given by the polar equation

r =
2
3
(1 + cos θ), −π ≤ θ ≤ π.

The numerical range W (A) then coincides with the convex hull of the portion of
C(A) corresponding to θ ∈ [−2π/3, 2π/3], and the triple eigenvalue of A is λ = 1/3.
Direct computations show that, for a point p = (x, y) on the non-flat portion of
∂W (A):

Dp(A) =

√
(x− 1

3
)2 + y2 =

√
r2 − 2

3
r cos θ +

1
9

=
1
3

√
5 + 4 cos θ,

Rp(A) =
(r2 + (r′)2)3/2

r2 + 2(r′)2 − rr′′
=

4
√

2
9

(1 + cos θ)1/2.

Hence,

Dp(A)
Rp(A)

=
3

4
√

2

√
4 +

1
1 + cos θ

,

and

M(A) =
3

4
√

2
max

0≤θ≤2π/3

√
4 +

1
1 + cos θ

=
3

4
√

2

√
4 +

1
1 + cos 2π

3

=
3
√

3
4

.

¥
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According to [8], there are three possible shapes of W (A) for unitarily irreducible
3× 3 matrices: an ellipse, an ovular shape, and a shape with a flat portion on the
boundary. Of course, M(A) ≤ 1 for all matrices with an elliptical W (A). As
it happens [7], all 3 × 3 matrices with a flat portion on ∂W (A) and coinciding
eigenvalues are unitarily similar to a matrix (15). Hence, for all such matrices
M(A) = 3

√
3/4. We did not compute the explicit values of M(A) for 3×3 matrices

A with ovular W (A).
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