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Abstract

We describe all linear self-mappings of the space of bounded linear operators in an
infinite dimensional separable complex Hilbert space which preserve the isomorphism
class of the lattice of invariant operator ranges.
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1 Main Results

Let H be an infinite dimensional separable complex Hilbert space. Let L(H) denote the
Banach algebra of linear bounded operators on H with the operator norm. An operator
range is, by definition, a linear set M⊆ H such that

M = Range G := {Gx|x ∈ H}
for some G ∈ L(H). Equivalently,M⊆ H is an operator range if and only ifM = Range G
for some linear bounded operator G : H0 → H with zero kernel, where H0 is a suitable
Hilbert space.

If T ∈ L(H), we denote by IOR(T ) the set of all operator ranges M that are T -
invariant: Tx ∈ M for every x ∈ M. The set IOR(T ) is a lattice (with respect to
addition and intersection); this follows from the general fact that intersection and sum
of two operator ranges are again operator ranges. For a proof of this fact and for other
fundamental properties of operator ranges see, for example, [2].

In this paper we prove two theorems:

Theorem 1 For every T ∈ L(H), if M1 ⊂ M2 are two T -invariant operator ranges
such that the dimension of the factor linear set M2/M1 exceeds one, then there exists
M∈ IOR(T ) with the property that

M1 ⊂M ⊂M2, M1 6= M 6= M2.

Theorem 2 Let φ : L(H) −→ L(H) be a bijective linear map such that for every T ∈
L(H), the lattices IOR(T ) and IOR(φ(T )) are isomorphic. Then there exists a non-zero
complex number α, a boundedly invertible S ∈ L(H), and a (not necessarily continuous)
linear functional f : L(H) −→ C such that

φ(T ) = αSTS−1 + f(T )I (1)

for every T ∈ L(H).

It was proved in [3] that the same formula (1) describes the bijective linear maps φ
on L(H) with the property that the lattice of T -invariant linear sets and the lattice of
φ(T )-invariant linear sets are isomorphic, for every T ∈ L(H). Combining this result with
Theorem 2, we obtain:

Corollary 3 A bijective linear map φ : L(H) −→ L(H) has the property that for every
T ∈ L(H), the lattices IOR(T ) and IOR(φ(T )) are isomorphic, if and only if φ has
the property that for every T ∈ L(H), the lattices of T -invariant linear sets and of φ(T )-
invariant linear sets are isomorphic.

Theorem 1 will be used in the proof of Theorem 2. Perhaps, Theorem 1 is independently
interesting.
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2 Proof of Theorem 1

We start with some preliminaries. Let N be an operator range. There is a norm ‖ · ‖N on
N with respect to which N is a Hilbert space, and in addition,

‖x‖N ≥ ‖x‖H (2)

for every x ∈ N , where ‖ · ‖H is the norm in H (see Theorem 1.1 of [2]). In fact, if
N = Range G, where G : H0 → H is a linear bounded operator with zero kernel, then one
can choose ‖ · ‖N so that

‖Gy‖2
N = ‖Gy‖2

H + ‖y‖2
H0

, y ∈ H0. (3)

Lemma 4 If T ∈ L(H), and if N is a T -invariant operator range, then T is bounded, as
an operator on the Hilbert space N .

Proof. By the closed graph theorem, we only have to check that the graph of T is
closed in the Hilbert space N ⊕N . Let a sequence {(xn, Txn) ∈ N ⊕N}∞n=1 converge to
(y, z) ∈ N ⊕N . Then xn → y and Txn → z in N , therefore also xn → y and Txn → z in
H. Since T ∈ L(H), we must have z = Ty, which proves the closedness of the graph of T
in N ⊕N .

Lemma 5 The set of operator ranges in the Hilbert space N (in short: N -operator ranges)
coincides with the set of operator ranges in the Hilbert space H (in short: H-operator
ranges), that are contained in N .

Proof. Let G : H0 → H be a linear bounded operator with zero kernel and range N ,
and assume that ‖ · ‖N is given by (3). If Range B ⊆ N for some B ∈ L(H), then by
Douglas’ lemma, there exists C ∈ L(H,H0) such that B = GC. Therefore,

‖By‖2
N = ‖GCy‖2

N = ‖By‖2
H + ‖Cy‖2

H0
≤ (‖B‖2 + ‖C‖2)‖y‖2

H,

and so B is a bounded operator from H into N . Hence Range B is an N -operator range.
Conversely, if M = Range B, B ∈ L(N ) is an N -operator range, then (2) shows that B is
bounded as an operator into H, and so M is an H-operator range.

Proof of Theorem 1. Let T ∈ L(H), and fix two T -invariant operator ranges M1 ⊂
M2 satisfying the hypotheses of Theorem 1. In view of Lemmas 4 and 5 (applied for
N = M2), we can (and do) assume that M2 = H.

Let us consider three possibilities:

(i) M1 is not closed and not dense in H. We are done - take M to be the closure of
M1.
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(ii) M1 is closed. Note that every T̂ ∈ L(H0), where the dimension of the Hilbert
space H0 exceeds one, has an invariant operator range different from {0} and H0. Indeed,
leaving aside the trivial case of a scalar operator T̂ , since the spectrum of T̂ is not empty,
for some λ ∈ C we will have Ker (T̂ − λI) 6= {0} or Range (T̂ − λI) 6= H0. So we may take
Ker (T̂ − λI) or Range (T̂ − λI), as appropriate, as the required operator range. Applying
the observation to the operator T̂ induced by T in the factor space H/M1, we complete
the proof of Theorem 1 in case M1 is closed.

(iii) M1 is dense in H. We have M1 = Range V , where V is a bounded positive
operator on H (see [2]). Moreover, by Lemma 4, T is bounded as an operator on the
Hilbert space M1. It is also bounded as an operator on the Hilbert space H. Therefore,
by Donoghue’s Theorem [1], the operator T maps Range φ(V ) into itself for every Löwner
function φ (in fact, it is sufficient to use a much easier result with φ(t) = tα, 0 < α < 1,
see, e.g., [4], Theorem 4.1.10). Using a description of Range V α, 0 < α < 1, in terms
of the spectral decomposition of V , one can easily check that these operator ranges are
properly contained inH and properly containM1. Thus, we obtain a continuum of required
T -invariant operator ranges.

3 Proof of Theorem 2

The proof follows the pattern of the proof of Theorem 3.1 in [3]. We need several lemmas,
in analogy with the proof given in [3]. In what follows, we denote by latn (resp. lat∞)
the lattice of operator ranges in the n-dimensional (n < ∞) (resp. infinite dimensional
separable) Hilbert space.

We start with a known result on operator ranges.

Lemma 6 Let H be a separable Hilbert space. If M 6= H is an operator range in H, then
there exists a nonzero operator range N in H such that M∩N = {0}.

Proof. The statement is clear if M is closed. Otherwise, by a result of von Neumann
(see [2] for a transparent proof due to Dixmier) there exists a unitary operator U such that
M∩ UM = {0}, so we may take N = UM.

Lemma 7 Let H be a separable Hilbert space, and let T ∈ L(H) be such that IOR(T ) is
isomorphic as a lattice to latn, n < ∞ (resp. lat∞). Then T is a scalar multiple of the
identity and dimH = n (resp. H is infinite dimensional).

Proof. Assume first that IOR(T ) is isomorphic to latn, n < ∞. Then every chain

M1 ⊆M2 ⊆ · · · ⊆ Mm, Mj ∈ IOR(T ), j = 1, 2, · · · ,m
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has at most n+1 distinct elements, and there exists such a chain with exactly n+1 distinst
elements. By Theorem 1, dimH = n. Proposition 2.5 of [3] shows that T has the required
form.

Now assume that IOR(T ) is isomorphic to lat∞. Since every nonzero element of lat∞
contains a minimal nonzero element, namely, a one-dimensional subspace, the same is
true of IOR(T ). By Theorem 1, a minimal nonzero element of IOR(T ) must be a one-
dimensional subspace, i.e., the subspace spanned by an eigenvector of T . We obtain that
every nonzero T -invariant operator range contains an eigenvector.

Let τ : IOR(T ) → lat∞ be an isomorphism, where lat∞ is the lattice of operator
ranges in an infinite dimensional separable Hilbert space H0. Assume that u and v are
linearly independent eigenvectors of T corresponding to eigenvalues λ and µ, respectively.
The subspace

τ ((span u) + (span v)) ⊂ H0

is clearly two-dimensional, and therefore contains infinitely many different elements of lat∞.
So the element

(span u) + (span v) ∈ IOR(T ) (4)

also contains infinitely many different elements of IOR(T ). However, (4) contains infinitely
many T -invariant subspaces if and only if λ = µ. We obtain that T has only one eigenvalue
(perhaps of high multiplicity), call it λ0.

If Ker (T − λ0I) 6= H, then τ (Ker (T − λ0I)) 6= H0. By Lemma 6, there exists M ∈
lat∞, M 6= {0}, such that

τ (Ker (T − λ0I)) ∩M = {0}.

Then τ−1(M) is a nonzero T -invariant operator range that has the zero intersection with
Ker (T−λ0I). On the other hand, we have seen above that τ−1(M) contains an eigenvector
of T corresponding to the eigenvalue λ0, a contradiction. So we must conclude that Ker (T−
λ0I) = H.

Lemma 8 Let T ∈ L(H), where H is an infinite dimensional separable Hilbert space.
Then the following are equivalent:

(a) T = αP + βI with α ∈ C \ {0}, β ∈ C, P = P 2, and rank P = n < ∞;

(b) IOR(T ) is isomorphic as a lattice to latn ⊕ lat∞.

Proof. Assume (a) holds. Clearly, IOR(T ) = IOR(P ). Since every P -invariant
operator range M is of the form M = PM + (I − P )M, it follows that IOR(P ) is
isomorphic to

(P lat∞)⊕ ((I − P )lat∞) ,
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where we identify lat∞ with the lattice of operator ranges in H. By Lemma 5, (I−P )lat∞
coincides with the lattice of operator ranges in Ker P , which in turn is isomorphic to lat∞.
Thus (b) holds.

Conversely, assume (b) holds. Fix a lattice isomorphism τ : IOR(T ) → latn ⊕ lat∞.
Let M1 = τ−1(Cn⊕{0}) and M2 = τ−1({0}⊕H0). Consider M2 as a Hilbert space, and
T as a linear bounded operator on M2 (see Lemma 4). Taking into account that the lattice
of T |M2-invariant M2-operator ranges coincides with the sublattice of those T -invariant
H-operator ranges that are contained in M2 (see Lemma 5), we obtain from Lemma 7 that
T |M2 = γI for some γ ∈ C. Analogously, T |M1 = δI for some δ ∈ C.

It turns out that γ 6= δ. Indeed, arguing by contradiction, assume that T is a scalar
operator. Let N ∈ IOR(T ) be any element with the property that every chain

{0} = N1 ⊆ N2 ⊆ · · · ⊆ Nm−1 ⊆ Nm = M, {0} 6= N2 6= · · · 6= Nm−1 6= M, Nj ∈ IOR(T )
(5)

has length 3 (i.e., m = 3), in other words, dimN = 2. Then obviously there exists
a continuum of N2 ∈ IOR(T ) that satisfy (5). However, the element N = V ⊕ U ∈
latn ⊕ lat∞, where V and U are one-dimensional subspaces of Cn and of H0, respectively,
has the property that every chain

{0} = N1 ⊆ N2 ⊆ · · · ⊆ Nm−1 ⊆ Nm = N , {0} 6= N2 6= · · · 6= Nm−1 6= N , Nj ∈ latn⊕lat∞
(6)

has length 3, but there exist only two elements N2 that satisfy (6). This contradicts the
hypothesis (b).

Once we have ascertained that γ 6= δ, (a) follows with α = δ − γ, and with P the
projection on M1 along M2.

If P is assumed to have infinite dimensional rank and kernel, then the analogue of
Lemma 8 runs as follows, with essentially the same proof as Lemma 8:

Lemma 9 Let T be as in Lemma 8. Then the following are equivalent:

(a) T = αP +βI with α ∈ C\{0}, β ∈ C, P = P 2, and dim Range P = dim Ker P = ∞;

(b) IOR(T ) is isomorphic as a lattice to lat∞ ⊕ lat∞.

Lemma 10 Let E = {ej}∞j=1 be an orthonormal basis in H. Then there exists T ∈ L(H)
such that IOR(T ) is not isomorphic to IOR(T t), where T t ∈ L(H) is the operator whose
infinite matrix with respect to the basis E is the transpose of the infinite matrix representing
T (with respect to E).
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Proof. Define T by Tej = ej+1, j = 1, 2, · · ·. Clearly, T tej = ej−1 for j = 2, 3, · · ·, and
T te1 = 0. The linear span of e1 is a minimal nonzero element of IOR(T t). If IOR(T )
and IOR(T t) were isomorphic, then IOR(T ) would also have a minimal nonzero element,
which by Theorem 1 would have to be a one-dimensional subspace. However, this is
impossible, because Ker (λI − T ) = {0} for every λ ∈ C.

Once Lemmas 7 - 10 are established, the proof of Theorem 2 proceeds as that of
Theorem 3.1 in [3].
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