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Abstract
We describe all linear self-mappings of the space of bounded linear operators in an

infinite dimensional separable complex Hilbert space which preserve the isomorphism
class of the lattice of invariant operator ranges.
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1 Main Results

Let H be an infinite dimensional separable complex Hilbert space. Let £(H) denote the
Banach algebra of linear bounded operators on H with the operator norm. An operator
range is, by definition, a linear set M C H such that

M = Range G := {Gzx|xr € H}

for some G € L(H). Equivalently, M C H is an operator range if and only if M = Range G
for some linear bounded operator G : Hy — H with zero kernel, where H, is a suitable
Hilbert space.

If T'e€ L(H), we denote by ZOR(T') the set of all operator ranges M that are T-
invariant: Tx € M for every x € M. The set ZOR(T) is a lattice (with respect to
addition and intersection); this follows from the general fact that intersection and sum
of two operator ranges are again operator ranges. For a proof of this fact and for other
fundamental properties of operator ranges see, for example, [2].

In this paper we prove two theorems:

Theorem 1 For every T € L(H), if My C My are two T-invariant operator ranges
such that the dimension of the factor linear set My/ My exceeds one, then there ezists
M € TOR(T) with the property that
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Theorem 2 Let ¢ : L(H) — L(H) be a bijective linear map such that for every T €
L(H), the lattices TOR(T) and ZOR(H(T')) are isomorphic. Then there exists a non-zero
complex number «, a boundedly invertible S € L(H), and a (not necessarily continuous)
linear functional f : L(H) — C such that

O(T) = aSTS™ ' + f(T)] (1)
for every T' € L(H).

It was proved in [3] that the same formula (1) describes the bijective linear maps ¢
on L(H) with the property that the lattice of T-invariant linear sets and the lattice of
¢(T')-invariant linear sets are isomorphic, for every 7' € L(H). Combining this result with
Theorem 2, we obtain:

Corollary 3 A bijective linear map ¢ : L(H) — L(H) has the property that for every
T € L(H), the lattices TOR(T) and TOR(4(T)) are isomorphic, if and only if ¢ has
the property that for every T' € L(H), the lattices of T-invariant linear sets and of ¢(T')-
mwvariant linear sets are isomorphic.

Theorem 1 will be used in the proof of Theorem 2. Perhaps, Theorem 1 is independently
interesting.



2 Proof of Theorem 1

We start with some preliminaries. Let A be an operator range. There is a norm || - ||»- on
N with respect to which N is a Hilbert space, and in addition,

[zllar =l (2)

for every x € N, where || - |5 is the norm in H (see Theorem 1.1 of [2]). In fact, if
N = Range G, where G : Hy — H is a linear bounded operator with zero kernel, then one
can choose || - || so that

IGYI5 = 1GYll + Yl v € Ho. (3)

Lemma 4 If T € L(H), and if N is a T-invariant operator range, then T is bounded, as
an operator on the Hilbert space N .

Proof. By the closed graph theorem, we only have to check that the graph of T is
closed in the Hilbert space N @ N. Let a sequence {(z,, Tx,) € N ® N}, converge to
(y,z) e N®N. Then x,, — y and Tz,, — z in N, therefore also x,, — y and Tz,, — z in
H. Since T € L(H), we must have z = Ty, which proves the closedness of the graph of T'
nNeN. O

Lemma 5 The set of operator ranges in the Hilbert space N (in short: N -operator ranges)
coincides with the set of operator ranges in the Hilbert space H (in short: H-operator
ranges), that are contained in N .

Proof. Let G : Hy — H be a linear bounded operator with zero kernel and range N,
and assume that || - ||» is given by (3). If Range B C N for some B € L(H), then by
Douglas’ lemma, there exists C' € L(H,Hy) such that B = GC. Therefore,

1Bylir = IGCYIIR = 1Byl + ICyll3, < (IBI* + IC1)lyl

and so B is a bounded operator from H into /. Hence Range B is an AN-operator range.
Conversely, if M = Range B, B € L(/N) is an N-operator range, then (2) shows that B is
bounded as an operator into H, and so M is an H-operator range. O

Proof of Theorem 1. Let 7' € L(H), and fix two T-invariant operator ranges My C
M satisfying the hypotheses of Theorem 1. In view of Lemmas 4 and 5 (applied for

N = My), we can (and do) assume that My = H.
Let us consider three possibilities:

(i) M; is not closed and not dense in H. We are done - take M to be the closure of
M.



(ii) M, is closed. Note that every T € L(Ho), where the dimension of the Hilbert
space Hy exceeds one, has an invariant operator range different from {0} and Hy. Indeed,
leaving aside the trivial case of a scalar operator T , since the spectrum of T is not empty,
for some A € C we will have Ker (T’ — AI) # {0} or Range (T’ — M) # Hy. So we may take
Ker (T — M) or Range (T — M), as appropriate, as the required operator range. Applying
the observation to the operator T induced by T in the factor space H/ M, we complete
the proof of Theorem 1 in case M is closed.

(iii) M; is dense in ‘H. We have M; = RangeV, where V is a bounded positive
operator on H (see [2]). Moreover, by Lemma 4, T" is bounded as an operator on the
Hilbert space M. It is also bounded as an operator on the Hilbert space H. Therefore,
by Donoghue’s Theorem [1], the operator T' maps Range ¢(V') into itself for every Lowner
function ¢ (in fact, it is sufficient to use a much easier result with ¢(¢) =t*, 0 < a < 1,
see, e.g., [4], Theorem 4.1.10). Using a description of RangeV* 0 < a < 1, in terms
of the spectral decomposition of V| one can easily check that these operator ranges are
properly contained in ‘H and properly contain M. Thus, we obtain a continuum of required
T-invariant operator ranges.

3 Proof of Theorem 2

The proof follows the pattern of the proof of Theorem 3.1 in [3]. We need several lemmas,
in analogy with the proof given in [3]. In what follows, we denote by lat, (resp. lats,)
the lattice of operator ranges in the n-dimensional (n < oo) (resp. infinite dimensional
separable) Hilbert space.

We start with a known result on operator ranges.

Lemma 6 Let H be a separable Hilbert space. If M # H is an operator range in 'H, then
there exists a nonzero operator range N in ‘H such that M NN = {0}.

Proof. The statement is clear if M is closed. Otherwise, by a result of von Neumann
(see [2] for a transparent proof due to Dixmier) there exists a unitary operator U such that

MNUM = {0}, so we may take N =UM. 0O

Lemma 7 Let H be a separable Hilbert space, and let T € L(H) be such that TOR(T) is
isomorphic as a lattice to lat,, n < oo (resp. laty, ). Then T is a scalar multiple of the
identity and dimH = n (resp. 'H is infinite dimensional).

Proof. Assume first that ZOR(T') is isomorphic to lat,, n < co. Then every chain
MIQMZQnga MJGIOR<T)7 j:17277m
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has at most n+1 distinct elements, and there exists such a chain with exactly n+1 distinst
elements. By Theorem 1, dim H = n. Proposition 2.5 of [3] shows that T" has the required
form.

Now assume that ZOR(T') is isomorphic to lat.,. Since every nonzero element of lat.,
contains a minimal nonzero element, namely, a one-dimensional subspace, the same is
true of ZOR(T). By Theorem 1, a minimal nonzero element of ZOR(T') must be a one-
dimensional subspace, i.e., the subspace spanned by an eigenvector of 7. We obtain that
every nonzero T-invariant operator range contains an eigenvector.

Let 7 : ZOR(T) — laty be an isomorphism, where lat,, is the lattice of operator
ranges in an infinite dimensional separable Hilbert space Hy. Assume that u and v are
linearly independent eigenvectors of T' corresponding to eigenvalues A and p, respectively.
The subspace

7 ((spanu) + (spanv)) C Hy
is clearly two-dimensional, and therefore contains infinitely many different elements of lat.

So the element
(spanu) + (spanv) € ZOR(T) (4)

also contains infinitely many different elements of ZOR(T'). However, (4) contains infinitely
many 7-invariant subspaces if and only if A = u. We obtain that 7" has only one eigenvalue
(perhaps of high multiplicity), call it Ao.

If Ker (T'— M\oI) # H, then 7 (Ker (T'— \oI)) # Ho. By Lemma 6, there exists M €
lateo, M # {0}, such that
7 (Ker (T — X\oI)) N M = {0}.

Then 77!(M) is a nonzero T-invariant operator range that has the zero intersection with
Ker (T'—XoI). On the other hand, we have seen above that 77!(M) contains an eigenvector
of T corresponding to the eigenvalue \g, a contradiction. So we must conclude that Ker (7'—

Lemma 8 Let T € L(H), where H is an infinite dimensional separable Hilbert space.
Then the following are equivalent:

(a) T =aP + BI witha € C\ {0}, 3€C, P=P? andrank P =n < oo;
(b) ZOR(T) is isomorphic as a lattice to lat,, @ laty.
Proof. Assume (a) holds. Clearly, ZOR(T) = ZOR(P). Since every P-invariant
operator range M is of the foorm M = PM + (I — P)M, it follows that ZOR(P) is

isomorphic to
(Plats,) @ ((I — P)laty,)
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where we identify lat., with the lattice of operator ranges in ‘H. By Lemma 5, (I — P)lat,
coincides with the lattice of operator ranges in Ker P, which in turn is isomorphic to lat...
Thus (b) holds.

Conversely, assume (b) holds. Fix a lattice isomorphism 7 : ZOR(T) — lat,, & lat...
Let My = 77C" @ {0}) and My = 771 ({0} ® Hp). Consider My as a Hilbert space, and
T as a linear bounded operator on My (see Lemma 4). Taking into account that the lattice
of T'|m,-invariant My-operator ranges coincides with the sublattice of those T-invariant
H-operator ranges that are contained in M, (see Lemma 5), we obtain from Lemma 7 that
T|m, = I for some v € C. Analogously, T'|y, = 61 for some § € C.

It turns out that v # J. Indeed, arguing by contradiction, assume that 7" is a scalar
operator. Let N' € ZOR(T) be any element with the property that every chain

{0} :Nl QNQ c... Q/\/'m_l Q/\/'m:M, {O}%NQ% ?’é-/\/’m—l #M, ./V’] EIOR(T)

(5)
has length 3 (i.e., m = 3), in other words, dimN = 2. Then obviously there exists
a continuum of Ny € ZOR(T) that satisfy (5). However, the element N =V U €
lat,, @ lat,,, where )V and U are one-dimensional subspaces of C" and of Hj, respectively,
has the property that every chain

{O}ZNI gNZQQNm—l gNm:Na {0}7&-/\/’27&7&-/\/’771—1 %Na /\/’jelatn@latoo
(6)

has length 3, but there exist only two elements N5 that satisfy (6). This contradicts the
hypothesis (b).

Once we have ascertained that v # 0, (a) follows with & = 6 — 7, and with P the
projection on M; along Ms. O

If P is assumed to have infinite dimensional rank and kernel, then the analogue of
Lemma 8 runs as follows, with essentially the same proof as Lemma 8:

Lemma 9 Let T be as in Lemma 8. Then the following are equivalent:

(a) T = aP+ I witha € C\ {0}, 8 € C, P = P?, and dim Range P = dim Ker P = oo;

(b) ZOR(T) is isomorphic as a lattice to lats, @ laty.

Lemma 10 Let E = {e;}32, be an orthonormal basis in H. Then there exists T € L(H)
such that ZOR(T') is not isomorphic to ZOR(T"), where T* € L(H) is the operator whose
infinite matriz with respect to the basis E is the transpose of the infinite matriz representing
T (with respect to F).



Proof. Define T' by Te; = €41, j = 1,2,---. Clearly, T"e; = ¢;_ for j =2,3,---, and
T'e; = 0. The linear span of e; is a minimal nonzero element of ZOR(T"). If ZOR(T)
and ZOR(T") were isomorphic, then ZOR(T') would also have a minimal nonzero element,
which by Theorem 1 would have to be a one-dimensional subspace. However, this is
impossible, because Ker (\I —T') = {0} for every A € C. O

Once Lemmas 7 - 10 are established, the proof of Theorem 2 proceeds as that of
Theorem 3.1 in [3].
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