Linear Preservers of Isomorphic Lattices of Invariant Operator Ranges

Leiba Rodman^{*} Nahum Zobin [†]

Abstract

We describe all linear self-mappings of the space of bounded linear operators in an infinite dimensional separable complex Hilbert space which preserve the isomorphism class of the lattice of invariant operator ranges.

Key Words: Invariant operator ranges, linear preservers, Hilbert scales.

2000 Mathematical Subject Classification: 47A15, 47B49.

^{*}College of William and Mary, Department of Mathematics, P.O.Box 8795, Williamsburg, VA 23187-8795. The research of this author is partially supported by NSF Grant DMS-9800704.

[†]College of William and Mary, Department of Mathematics, P.O.Box 8795, Williamsburg, VA 23187-8795.

1 Main Results

Let \mathcal{H} be an infinite dimensional separable complex Hilbert space. Let $\mathcal{L}(\mathcal{H})$ denote the Banach algebra of linear bounded operators on \mathcal{H} with the operator norm. An operator range is, by definition, a linear set $\mathcal{M} \subseteq \mathcal{H}$ such that

$$\mathcal{M} = \operatorname{Range} G := \{Gx | x \in \mathcal{H}\}$$

for some $G \in \mathcal{L}(\mathcal{H})$. Equivalently, $\mathcal{M} \subseteq \mathcal{H}$ is an operator range if and only if $\mathcal{M} = \text{Range } G$ for some linear bounded operator $G : \mathcal{H}_0 \to \mathcal{H}$ with zero kernel, where \mathcal{H}_0 is a suitable Hilbert space.

If $T \in \mathcal{L}(\mathcal{H})$, we denote by $\mathcal{IOR}(T)$ the set of all operator ranges \mathcal{M} that are T-invariant: $Tx \in \mathcal{M}$ for every $x \in \mathcal{M}$. The set $\mathcal{IOR}(T)$ is a lattice (with respect to addition and intersection); this follows from the general fact that intersection and sum of two operator ranges are again operator ranges. For a proof of this fact and for other fundamental properties of operator ranges see, for example, [2].

In this paper we prove two theorems:

Theorem 1 For every $T \in \mathcal{L}(\mathcal{H})$, if $\mathcal{M}_1 \subset \mathcal{M}_2$ are two *T*-invariant operator ranges such that the dimension of the factor linear set $\mathcal{M}_2/\mathcal{M}_1$ exceeds one, then there exists $\mathcal{M} \in \mathcal{IOR}(T)$ with the property that

$$\mathcal{M}_1 \subset \mathcal{M} \subset \mathcal{M}_2, \qquad \mathcal{M}_1
eq \mathcal{M}
eq \mathcal{M}_2.$$

Theorem 2 Let $\phi : \mathcal{L}(\mathcal{H}) \longrightarrow \mathcal{L}(\mathcal{H})$ be a bijective linear map such that for every $T \in \mathcal{L}(\mathcal{H})$, the lattices $\mathcal{IOR}(T)$ and $\mathcal{IOR}(\phi(T))$ are isomorphic. Then there exists a non-zero complex number α , a boundedly invertible $S \in \mathcal{L}(\mathcal{H})$, and a (not necessarily continuous) linear functional $f : \mathcal{L}(\mathcal{H}) \longrightarrow \mathbb{C}$ such that

$$\phi(T) = \alpha STS^{-1} + f(T)I \tag{1}$$

for every $T \in \mathcal{L}(\mathcal{H})$.

It was proved in [3] that the same formula (1) describes the bijective linear maps ϕ on $\mathcal{L}(\mathcal{H})$ with the property that the lattice of *T*-invariant linear sets and the lattice of $\phi(T)$ -invariant linear sets are isomorphic, for every $T \in \mathcal{L}(\mathcal{H})$. Combining this result with Theorem 2, we obtain:

Corollary 3 A bijective linear map $\phi : \mathcal{L}(\mathcal{H}) \longrightarrow \mathcal{L}(\mathcal{H})$ has the property that for every $T \in \mathcal{L}(\mathcal{H})$, the lattices $\mathcal{IOR}(T)$ and $\mathcal{IOR}(\phi(T))$ are isomorphic, if and only if ϕ has the property that for every $T \in \mathcal{L}(\mathcal{H})$, the lattices of T-invariant linear sets and of $\phi(T)$ -invariant linear sets are isomorphic.

Theorem 1 will be used in the proof of Theorem 2. Perhaps, Theorem 1 is independently interesting.

2 Proof of Theorem 1

We start with some preliminaries. Let \mathcal{N} be an operator range. There is a norm $\|\cdot\|_{\mathcal{N}}$ on \mathcal{N} with respect to which \mathcal{N} is a Hilbert space, and in addition,

$$\|x\|_{\mathcal{N}} \ge \|x\|_{\mathcal{H}} \tag{2}$$

for every $x \in \mathcal{N}$, where $\|\cdot\|_{\mathcal{H}}$ is the norm in \mathcal{H} (see Theorem 1.1 of [2]). In fact, if $\mathcal{N} = \operatorname{Range} G$, where $G : \mathcal{H}_0 \to \mathcal{H}$ is a linear bounded operator with zero kernel, then one can choose $\|\cdot\|_{\mathcal{N}}$ so that

$$||Gy||_{\mathcal{N}}^{2} = ||Gy||_{\mathcal{H}}^{2} + ||y||_{\mathcal{H}_{0}}^{2}, \quad y \in \mathcal{H}_{0}.$$
(3)

Lemma 4 If $T \in \mathcal{L}(\mathcal{H})$, and if \mathcal{N} is a T-invariant operator range, then T is bounded, as an operator on the Hilbert space \mathcal{N} .

Proof. By the closed graph theorem, we only have to check that the graph of T is closed in the Hilbert space $\mathcal{N} \oplus \mathcal{N}$. Let a sequence $\{(x_n, Tx_n) \in \mathcal{N} \oplus \mathcal{N}\}_{n=1}^{\infty}$ converge to $(y, z) \in \mathcal{N} \oplus \mathcal{N}$. Then $x_n \to y$ and $Tx_n \to z$ in \mathcal{N} , therefore also $x_n \to y$ and $Tx_n \to z$ in \mathcal{H} . Since $T \in \mathcal{L}(\mathcal{H})$, we must have z = Ty, which proves the closedness of the graph of T in $\mathcal{N} \oplus \mathcal{N}$. \Box

Lemma 5 The set of operator ranges in the Hilbert space \mathcal{N} (in short: \mathcal{N} -operator ranges) coincides with the set of operator ranges in the Hilbert space \mathcal{H} (in short: \mathcal{H} -operator ranges), that are contained in \mathcal{N} .

Proof. Let $G : \mathcal{H}_0 \to \mathcal{H}$ be a linear bounded operator with zero kernel and range \mathcal{N} , and assume that $\|\cdot\|_{\mathcal{N}}$ is given by (3). If Range $B \subseteq \mathcal{N}$ for some $B \in \mathcal{L}(\mathcal{H})$, then by Douglas' lemma, there exists $C \in \mathcal{L}(\mathcal{H}, \mathcal{H}_0)$ such that B = GC. Therefore,

$$||By||_{\mathcal{N}}^{2} = ||GCy||_{\mathcal{N}}^{2} = ||By||_{\mathcal{H}}^{2} + ||Cy||_{\mathcal{H}_{0}}^{2} \le (||B||^{2} + ||C||^{2})||y||_{\mathcal{H}}^{2},$$

and so B is a bounded operator from \mathcal{H} into \mathcal{N} . Hence Range B is an \mathcal{N} -operator range. Conversely, if $\mathcal{M} = \text{Range } B, B \in \mathcal{L}(\mathcal{N})$ is an \mathcal{N} -operator range, then (2) shows that B is bounded as an operator into \mathcal{H} , and so \mathcal{M} is an \mathcal{H} -operator range. \Box

Proof of Theorem 1. Let $T \in \mathcal{L}(\mathcal{H})$, and fix two *T*-invariant operator ranges $\mathcal{M}_1 \subset \mathcal{M}_2$ satisfying the hypotheses of Theorem 1. In view of Lemmas 4 and 5 (applied for $\mathcal{N} = \mathcal{M}_2$), we can (and do) assume that $\mathcal{M}_2 = \mathcal{H}$.

Let us consider three possibilities:

(i) \mathcal{M}_1 is not closed and not dense in \mathcal{H} . We are done - take \mathcal{M} to be the closure of \mathcal{M}_1 .

(ii) \mathcal{M}_1 is closed. Note that every $\hat{T} \in \mathcal{L}(\mathcal{H}_0)$, where the dimension of the Hilbert space \mathcal{H}_0 exceeds one, has an invariant operator range different from $\{0\}$ and \mathcal{H}_0 . Indeed, leaving aside the trivial case of a scalar operator \hat{T} , since the spectrum of \hat{T} is not empty, for some $\lambda \in \mathbb{C}$ we will have $\operatorname{Ker}(\hat{T} - \lambda I) \neq \{0\}$ or $\operatorname{Range}(\hat{T} - \lambda I) \neq \mathcal{H}_0$. So we may take $\operatorname{Ker}(\hat{T} - \lambda I)$ or $\operatorname{Range}(\hat{T} - \lambda I)$, as appropriate, as the required operator range. Applying the observation to the operator \hat{T} induced by T in the factor space $\mathcal{H}/\mathcal{M}_1$, we complete the proof of Theorem 1 in case \mathcal{M}_1 is closed.

(iii) \mathcal{M}_1 is dense in \mathcal{H} . We have $\mathcal{M}_1 = \operatorname{Range} V$, where V is a bounded positive operator on \mathcal{H} (see [2]). Moreover, by Lemma 4, T is bounded as an operator on the Hilbert space \mathcal{M}_1 . It is also bounded as an operator on the Hilbert space \mathcal{H} . Therefore, by Donoghue's Theorem [1], the operator T maps $\operatorname{Range} \phi(V)$ into itself for every Löwner function ϕ (in fact, it is sufficient to use a much easier result with $\phi(t) = t^{\alpha}$, $0 < \alpha < 1$, see, e.g., [4], Theorem 4.1.10). Using a description of $\operatorname{Range} V^{\alpha}$, $0 < \alpha < 1$, in terms of the spectral decomposition of V, one can easily check that these operator ranges are properly contained in \mathcal{H} and properly contain \mathcal{M}_1 . Thus, we obtain a continuum of required T-invariant operator ranges.

3 Proof of Theorem 2

The proof follows the pattern of the proof of Theorem 3.1 in [3]. We need several lemmas, in analogy with the proof given in [3]. In what follows, we denote by lat_n (resp. $\operatorname{lat}_{\infty}$) the lattice of operator ranges in the *n*-dimensional $(n < \infty)$ (resp. infinite dimensional separable) Hilbert space.

We start with a known result on operator ranges.

Lemma 6 Let \mathcal{H} be a separable Hilbert space. If $\mathcal{M} \neq \mathcal{H}$ is an operator range in \mathcal{H} , then there exists a nonzero operator range \mathcal{N} in \mathcal{H} such that $\mathcal{M} \cap \mathcal{N} = \{0\}$.

Proof. The statement is clear if \mathcal{M} is closed. Otherwise, by a result of von Neumann (see [2] for a transparent proof due to Dixmier) there exists a unitary operator U such that $\mathcal{M} \cap U\mathcal{M} = \{0\}$, so we may take $\mathcal{N} = U\mathcal{M}$. \Box

Lemma 7 Let \mathcal{H} be a separable Hilbert space, and let $T \in \mathcal{L}(\mathcal{H})$ be such that $\mathcal{IOR}(T)$ is isomorphic as a lattice to lat_n , $n < \infty$ (resp. $\operatorname{lat}_\infty$). Then T is a scalar multiple of the identity and dim $\mathcal{H} = n$ (resp. \mathcal{H} is infinite dimensional).

Proof. Assume first that $\mathcal{IOR}(T)$ is isomorphic to lat_n , $n < \infty$. Then every chain

$$\mathcal{M}_1 \subseteq \mathcal{M}_2 \subseteq \cdots \subseteq \mathcal{M}_m, \quad \mathcal{M}_j \in \mathcal{IOR}(T), \quad j = 1, 2, \cdots, m$$

has at most n+1 distinct elements, and there exists such a chain with exactly n+1 distinst elements. By Theorem 1, dim $\mathcal{H} = n$. Proposition 2.5 of [3] shows that T has the required form.

Now assume that $\mathcal{IOR}(T)$ is isomorphic to $\operatorname{lat}_{\infty}$. Since every nonzero element of $\operatorname{lat}_{\infty}$ contains a minimal nonzero element, namely, a one-dimensional subspace, the same is true of $\mathcal{IOR}(T)$. By Theorem 1, a minimal nonzero element of $\mathcal{IOR}(T)$ must be a one-dimensional subspace, i.e., the subspace spanned by an eigenvector of T. We obtain that every nonzero T-invariant operator range contains an eigenvector.

Let $\tau : \mathcal{IOR}(T) \to \operatorname{lat}_{\infty}$ be an isomorphism, where $\operatorname{lat}_{\infty}$ is the lattice of operator ranges in an infinite dimensional separable Hilbert space \mathcal{H}_0 . Assume that u and v are linearly independent eigenvectors of T corresponding to eigenvalues λ and μ , respectively. The subspace

$$\tau\left((\operatorname{span} u) + (\operatorname{span} v)\right) \subset \mathcal{H}_0$$

is clearly two-dimensional, and therefore contains infinitely many different elements of lat_{∞} . So the element

$$(\operatorname{span} u) + (\operatorname{span} v) \in \mathcal{IOR}(T)$$
 (4)

also contains infinitely many different elements of $\mathcal{IOR}(T)$. However, (4) contains infinitely many *T*-invariant subspaces if and only if $\lambda = \mu$. We obtain that *T* has only one eigenvalue (perhaps of high multiplicity), call it λ_0 .

If Ker $(T - \lambda_0 I) \neq \mathcal{H}$, then $\tau (\text{Ker} (T - \lambda_0 I)) \neq \mathcal{H}_0$. By Lemma 6, there exists $\mathcal{M} \in lat_{\infty}, \mathcal{M} \neq \{0\}$, such that

$$\tau (\operatorname{Ker} (T - \lambda_0 I)) \cap \mathcal{M} = \{0\}.$$

Then $\tau^{-1}(\mathcal{M})$ is a nonzero *T*-invariant operator range that has the zero intersection with Ker $(T - \lambda_0 I)$. On the other hand, we have seen above that $\tau^{-1}(\mathcal{M})$ contains an eigenvector of *T* corresponding to the eigenvalue λ_0 , a contradiction. So we must conclude that Ker $(T - \lambda_0 I) = \mathcal{H}$. \Box

Lemma 8 Let $T \in \mathcal{L}(\mathcal{H})$, where \mathcal{H} is an infinite dimensional separable Hilbert space. Then the following are equivalent:

- (a) $T = \alpha P + \beta I$ with $\alpha \in \mathbb{C} \setminus \{0\}, \beta \in \mathbb{C}, P = P^2$, and rank $P = n < \infty$;
- (b) $\mathcal{IOR}(T)$ is isomorphic as a lattice to $\operatorname{lat}_n \oplus \operatorname{lat}_\infty$.

Proof. Assume (a) holds. Clearly, $\mathcal{IOR}(T) = \mathcal{IOR}(P)$. Since every *P*-invariant operator range \mathcal{M} is of the form $\mathcal{M} = P\mathcal{M} + (I - P)\mathcal{M}$, it follows that $\mathcal{IOR}(P)$ is isomorphic to

$$(Plat_{\infty}) \oplus ((I-P)lat_{\infty}),$$

where we identify $\operatorname{lat}_{\infty}$ with the lattice of operator ranges in \mathcal{H} . By Lemma 5, $(I-P)\operatorname{lat}_{\infty}$ coincides with the lattice of operator ranges in Ker P, which in turn is isomorphic to $\operatorname{lat}_{\infty}$. Thus (b) holds.

Conversely, assume (b) holds. Fix a lattice isomorphism $\tau : \mathcal{IOR}(T) \to \operatorname{lat}_n \oplus \operatorname{lat}_\infty$. Let $\mathcal{M}_1 = \tau^{-1}(\mathbb{C}^n \oplus \{0\})$ and $\mathcal{M}_2 = \tau^{-1}(\{0\} \oplus \mathcal{H}_0)$. Consider \mathcal{M}_2 as a Hilbert space, and T as a linear bounded operator on \mathcal{M}_2 (see Lemma 4). Taking into account that the lattice of $T|_{\mathcal{M}_2}$ -invariant \mathcal{M}_2 -operator ranges coincides with the sublattice of those T-invariant \mathcal{H} -operator ranges that are contained in \mathcal{M}_2 (see Lemma 5), we obtain from Lemma 7 that $T|_{\mathcal{M}_2} = \gamma I$ for some $\gamma \in \mathbb{C}$. Analogously, $T|_{\mathcal{M}_1} = \delta I$ for some $\delta \in \mathbb{C}$.

It turns out that $\gamma \neq \delta$. Indeed, arguing by contradiction, assume that T is a scalar operator. Let $\mathcal{N} \in \mathcal{IOR}(T)$ be any element with the property that every chain

$$\{0\} = \mathcal{N}_1 \subseteq \mathcal{N}_2 \subseteq \cdots \subseteq \mathcal{N}_{m-1} \subseteq \mathcal{N}_m = \mathcal{M}, \quad \{0\} \neq \mathcal{N}_2 \neq \cdots \neq \mathcal{N}_{m-1} \neq \mathcal{M}, \quad \mathcal{N}_j \in \mathcal{IOR}(T)$$
(5)

has length 3 (i.e., m = 3), in other words, dim $\mathcal{N} = 2$. Then obviously there exists a continuum of $\mathcal{N}_2 \in \mathcal{IOR}(T)$ that satisfy (5). However, the element $\mathcal{N} = \mathcal{V} \oplus \mathcal{U} \in$ $\operatorname{lat}_n \oplus \operatorname{lat}_\infty$, where \mathcal{V} and \mathcal{U} are one-dimensional subspaces of \mathbb{C}^n and of \mathcal{H}_0 , respectively, has the property that every chain

$$\{0\} = \mathcal{N}_1 \subseteq \mathcal{N}_2 \subseteq \cdots \subseteq \mathcal{N}_{m-1} \subseteq \mathcal{N}_m = \mathcal{N}, \quad \{0\} \neq \mathcal{N}_2 \neq \cdots \neq \mathcal{N}_{m-1} \neq \mathcal{N}, \quad \mathcal{N}_j \in \operatorname{lat}_n \oplus \operatorname{lat}_{\infty}$$

$$(6)$$

has length 3, but there exist only two elements \mathcal{N}_2 that satisfy (6). This contradicts the hypothesis (b).

Once we have ascertained that $\gamma \neq \delta$, (a) follows with $\alpha = \delta - \gamma$, and with P the projection on \mathcal{M}_1 along \mathcal{M}_2 . \Box

If P is assumed to have infinite dimensional rank and kernel, then the analogue of Lemma 8 runs as follows, with essentially the same proof as Lemma 8:

Lemma 9 Let T be as in Lemma 8. Then the following are equivalent:

- (a) $T = \alpha P + \beta I$ with $\alpha \in \mathbb{C} \setminus \{0\}, \beta \in \mathbb{C}, P = P^2$, and dim Range $P = \dim \operatorname{Ker} P = \infty$;
- (b) $\mathcal{IOR}(T)$ is isomorphic as a lattice to $\operatorname{lat}_{\infty} \oplus \operatorname{lat}_{\infty}$.

Lemma 10 Let $E = \{e_j\}_{j=1}^{\infty}$ be an orthonormal basis in \mathcal{H} . Then there exists $T \in \mathcal{L}(\mathcal{H})$ such that $\mathcal{IOR}(T)$ is not isomorphic to $\mathcal{IOR}(T^t)$, where $T^t \in \mathcal{L}(\mathcal{H})$ is the operator whose infinite matrix with respect to the basis E is the transpose of the infinite matrix representing T (with respect to E).

Proof. Define T by $Te_j = e_{j+1}$, $j = 1, 2, \cdots$. Clearly, $T^t e_j = e_{j-1}$ for $j = 2, 3, \cdots$, and $T^t e_1 = 0$. The linear span of e_1 is a minimal nonzero element of $\mathcal{IOR}(T^t)$. If $\mathcal{IOR}(T)$ and $\mathcal{IOR}(T^t)$ were isomorphic, then $\mathcal{IOR}(T)$ would also have a minimal nonzero element, which by Theorem 1 would have to be a one-dimensional subspace. However, this is impossible, because Ker $(\lambda I - T) = \{0\}$ for every $\lambda \in \mathbb{C}$. \Box

Once Lemmas 7 - 10 are established, the proof of Theorem 2 proceeds as that of Theorem 3.1 in [3].

References

- [1] W. F. Donoghue. The interpolation of quadratic norms. Acta Mathematica, 118,3–4:251–270, 1967.
- [2] P. A. Fillmore and J. P. Williams. On operator ranges. Advances in Mathematics, 7:254–281, 1971.
- [3] A. A. Jafarian, L. Rodman, and P. Šemrl. Linear maps preserving the isomorphism class of lattices of invariant subspaces. *Proc. of Amer. Math. Soc.*, 126:3607–3617, 1998.
- [4] S. G. Krein, Yu. I. Petunin, and E. M. Semenov. Interpolation of Linear Operators. Nauka, Moscow, 1978, (in Russian); English translation: Translations of Mathematical Monographs, 54, Amer. Math. Soc., Providence, R.I., 1982.