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Abstract. We survey known and new results concerning the geometric struc-
ture of the convex hulls of finite irreducible Coxeter groups. In particular we
consider a conjecture concerning the normals to the faces of maximal dimen-
sion of these convex hulls. This conjecture is related to a theorem of Birkhoff
and also to interpolation of operators. We describe various approaches to its
proof as well as various computer calculations involved.

1. Introduction

Let G be a finite irreducible Coxeter group naturally acting on a finite dimen-
sional real Euclidean space V . So, G is a subset of the linear space End V of linear
operators in V. Let I denote the identity operator.

We study the geometry of the convex hull of G, which we denote by conv G.
This is a convex polytope in the linear space End V. What is its facial structure?
In particular, what are its faces of maximal dimension? All these problems naturally
arise in various disguises — we were mostly motivated by a duality approach to
interpolation of operators discussed below.

Recently there has been substantial progress in this direction, see [10]. During
the summer of 2000 we were able to move further, relying heavily on computer
calculations. The goal of this article is to give a full account of the present state of
the problem.

1.1. Birkhoff’s Theorem. To describe the results, we start with a formulation of
a well known theorem due to G. Birkhoff [2].

Definition 1.1. Let T = (tij) be an n × n matrix. It is called bistochastic (or
doubly stochastic) if its entries are non-negative and

for every j, 1 ≤ j ≤ n,

n∑

i=1

tij = 1,

n∑

i=1

tji = 1

The set of all bistochastic n× n matrices is denoted by Ωn.
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Obviously, the set Ωn is a convex polytope in the space of n×n matrices. Since
there are 2n−1 independent linear equations involved in the definition, this polytope
is actually in a subspace of dimension n2 − (2n− 1) = (n− 1)2.

Definition 1.2. Let Permn denote the group of n× n permutation matrices.

Theorem 1.3 (G. Birkhoff, [2]). The set of vertices of the polytope Ωn coincides
with the set of permutation matrices Permn.

So, the polytope of bistochastic matrices turns out to be nothing else but the
convex hull of the group Permn . Let us reformulate this result. The group Permn

acts reducibly on Rn : it fixes the vector e = (1, 1, · · · , 1) and acts irreducibly
on its orthogonal complement e⊥ = {(xi) ∈ Rn :

∑
xi = 0}. Consider the group

An−1 = Permn |e⊥ . This group is maybe the most important example of a finite
irreducible Coxeter group. It spans a (n− 1)2-dimensional subspace in the space of
n×n matrices. Note that all bistochastic matrices also fix the vector e and leave e⊥

invariant — this is actually a part of the definition. So, Theorem 1.3 says that the
polytope of bistochastic matrices is located in a (n− 1)2-dimensional subspace and
its vertices are operators from An−1. Thus the definition of bistochastic matrices
describes the convex hull of the Coxeter group An−1 in terms of linear inequalities.
One can rather easily see that this set of inequalities is the smallest possible: each
inequality describes a half-space bounded by a face of the polytope. But what is
the invariant meaning of these inequalities?

There exists a whole industry dealing with generalizations of results known for
groups An to other Coxeter groups. Very often these generalizations turn out to be
non-trivial and useful, providing deeper insights into the results. Sometimes they
are simply exercises in the theory of Coxeter groups. It is usually very interesting
if a result valid for An proves not to be valid for all Coxeter groups — such results
are usually most challenging. This is exactly the case with generalizations of the
Birkhoff Theorem: a natural generalization — see Conjecture 1.4 below — is not
true for Coxeter groups whose graphs are branching, but it seems to be true for
Coxeter groups whose graphs are non-branching (as of January 2001, Conjecture
1.4 has been verified for all finite irreducible Coxeter groups except H4).

Actually, our main impetus came not from a simple (though natural) desire
to generalize but from a rather unexpected source — the theory of Interpolation
of Operators. The problem becomes very natural in that setting and the main
Conjecture arises from some deep results related to interpolation of operators in
spaces with Coxeter-invariant norms. We describe this circle of ideas in Subsection
1.3 below.

1.2. Conjecture. Returning to the general setting of an irreducible Coxeter group
G we may say that we are interested in calculation of the faces of conv G of max-
imal dimension (dim V )2 − 1. Each such face is a polytope of full dimension in
an affine hyperplane {A ∈ End V : f(A) = c} where f is a linear functional on
End V. These (properly scaled) functionals are naturally identified with elements
of Extr (conv G)◦ — the set of extreme elements of the polar polytope

(conv G)◦ = {h ∈ (End V )∗ : ∀A ∈ conv G h(A) ≤ 1}.
We prefer to introduce a Euclidean structure into End V which allows to identify
the spaces End V and (End V )∗ and to treat the mentioned functionals as normals
to the face. The needed scalar product on End V is given by the formula (A,B) =
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trace (AB∗), where B∗ is the operator adjoint to B (to define B∗ we need the
Euclidean structure in V ). Moreover, the Euclidean structure in V allows to identify
V ∗ with V and therefore to identify V ⊗V with V ⊗V ∗. In turn, V ⊗V ∗ is naturally
identified with the space (End V )∗, which is already identified with End V, so we
may identify the spaces V ⊗V and End V. In particular, for any x, y ∈ V we identify
x⊗ y with the rank one operator z 7→ x〈y, z〉.

Let us describe the Conjecture.
Consider the set W(G) of all weights of the group G. Throughout this paper

we consider “non-normalized weights”, i.e., nonzero vectors directed along extreme
rays of Weyl chambers – the term “weight” is often used to denote only specially
normalized vectors of this type. Each weight ω is associated with a vertex π(ω) of
the Coxeter graph Γ(G).

Let EG denote the set of extremal weights of the group G, i.e., those associated
with the end vertices of the Coxeter graph Γ(G).

Put mG(x, y) = max{〈gx, y〉 : g ∈ G}. One can show that in the case of an irre-
ducible Coxeter group G the quantity mG(x, y) is strictly positive for any nonzero
vectors x, y ∈ V.

Let
BG = {ω ⊗ τ/mG(ω, τ) : ω, τ ∈ EG, π(ω) 6= π(τ)}.

We call the elements of BG the Birkhoff tensors. Note that Birkhoff tensors
all have rank one.

The importance of Birkhoff tensors for our problem is apparent because of the
following result (see Theorem 4.4 below):

BG = (Extr (conv G)◦)
⋂

( rank 1 tensors ).

The following conjecture was first proposed in 1979 by Veronica Zobin [19] and
later elaborated by the last author:

Conjecture 1.4. (a) If the Coxeter graph Γ(G) is non-branching then

BG = Extr (conv G)◦.

(b) If the Coxeter graph Γ(G) is branching then

BG $ Extr (conv G)◦.

Part (b) of the Conjecture was proved in [10]; we reproduce this proof in Section
8 below. As for Part (a), it was proved in [10] for all infinite families of Coxeter
groups with non-branching graphs, and we have verified it for the groups F4 and H3

by rather nontrivial computer calculations. The only remaining group is H4. The
computer calculations that were successful for other groups could not be completed
for H4 on the available computers, mainly because of insufficient random access
memory.

It should be noted that the success in proving Part (b) was achieved with a very
strong computer component: a computer calculation found an essentially unique
tensor of rank 3 belonging to the set Extr (conv D4)◦, and then the general case of
a Coxeter group with a branching graph was reduced to this one. We still do not
quite understand the invariant meaning of this rank 3 tensor. However, after this
tensor is found one can verify by hand that it really belongs to Extr (conv D4)◦, so
the proof does not formally depend upon the computer calculations.
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Certainly, it would be very interesting to find a unified approach avoiding the
case study of irreducible Coxeter groups and heavy use of computers. We believe
that there must be a general simple reason for the validity of the Conjecture.

1.3. Interpolation of operators. The above conjecture naturally appeared in
the theory of interpolation of operators on spaces with given symmetries — see
[16, 15]. The main object studied in these papers was the convex set env G defined
as the semigroup of all linear operators in V which transform every G-invariant
convex closed set into itself:

env G = {T ∈ End V : T (U) ⊂ U for every convex closed G-invariant U ⊂ V }.
Obviously,

conv G ⊂ env G.

If these two sets coincide then the only operators simultaneously contracting all G-
invariant closed convex sets are those which have this property almost by definition.
So this case is not interesting from the point of view of interpolation of operators.
The opposite case is much more interesting — there are nontrivial operators that
can be interpolated. In the case of an irreducible finite Coxeter group G we have a
convenient dual description of the set env G – this description is one of the central
results of [16]:

Extr (env G)◦ = BG.

So the question is if conv G = env G, i.e., if Extr (G◦) = BG.
Currently we know that the latter equality is not true for Coxeter groups with

branching graphs. This leads to two difficult problems. First, what is Extr (G◦) for
such groups? Second, what are the extreme common contractions, i.e., the extreme
elements of the semigroup env G? As of now, we have no viable conjectures.

1.4. Geometry of orbihedra. The problem of describing the facial structure of
conv G is a particular case of a more general problem, which naturally arises in sev-
eral areas of Operator Theory and Representation Theory. Consider a finite group
G of linear operators acting on V. For every nonzero x ∈ V consider the related
G-orbihedron CoG x – the convex hull of the G-orbit of x. The convex geometry of
G-orbihedra is important in numerous problems. In the case when G is a Coxeter
group, one can obtain very detailed information regarding the facial structure of
CoG x in convenient geometric terms – see [11] for the most comprehensive account.
But as soon as we depart from Coxeter groups in their natural representations the
situation becomes much more complicated. For example, the natural action of
G × G on End V by pre- and post-multiplications is not generated by reflections
across hyperplanes, and all of the powerful machinery developed in [11] is not ap-
plicable. Moreover, preliminary computer experiments (C.K. Li, I. Spitkovsky, N.
Zobin) show that the geometry of the related orbihedra may be very complicated.
Nevertheless, there are several cases when it is possible to understand this geometry
pretty well. It is more natural to consider a larger group S⊗2 (G) generated by G×G
and the operator T 7→ T ∗, where T ∗ is the operator adjoint to T. First, conv G can
be viewed as a S⊗2 (G)-orbihedron generated by the identity operator, and its facial
structure does not seem too bad, at least in the case of a Coxeter group with a
non-branching graph. The second example is the S⊗2 (G)-orbihedron generated by a
Birkhoff tensor. One can easily see that the group S⊗2 acts transitively on the set of
Birkhoff tensors of a Coxeter group with a non-branching graph, so the set BG is the
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set of extreme vectors of a S⊗2 (G)-orbihedron. Since (BG)◦ = conv G in this case
(not yet verified for G = H4) then for b ∈ BG we have Extr (CoS⊗2 (G) b)◦ = G. For
what other elements b ∈ End V does the related S⊗2 (G)-orbihedron have a simple
facial structure? This is a very interesting (but seemingly difficult) problem.

Let us remark that an analogous problem for infinite groups O(V ) and U(V )
of, respectively, orthogonal operators on a real Euclidean space V and unitary
operators on a complex Hermitian space V , is closely related to the theory of
Schatten - von Neumann ideals, which has been studied in great depth (though in
different terms). One can answer some of these questions by rethinking classical
results in the geometric theory of Schatten - von Neumann ideals (see, e.g., [6]).

Another way to study the geometric structure of conv G is to explore the group
of linear operators on End V preserving conv G. This is a sort of a linear pre-
server problem, rather popular in Linear Algebra, see [13]. There was considerable
progress in this direction recently, see [8]. A general type of answer is as follows: the
only operators preserving conv G are the so-called rigid embeddings, i.e., operators
of the type φ(A) = gAh or φ(A) = gA∗h, where g, h belong to the normalizer of
G in O(V ), and gh ∈ G. Such results were known for groups O(V ) ([14]) and An

([9]). Rather unexpectedly, rigid embeddings are not the only operators preserving
conv Bn, see [8].

Acknowledgments. We are greatly indebted to Chi-Kwong Li and Veronica
Zobin for numerous valuable discussions of various aspects of the problem. We are
also thankful to Val Spitkovsky whose computer expertise was so helpful to us.

2. A brief review of Coxeter groups

Let us now address several facts concerning the theory of Coxeter groups. For
greater detail, consult [1], [3], or [7]. Let G ⊂ End V be a group. Then G is a
Coxeter group if it is finite, generated by orthogonal reflections across hyperplanes
(containing the origin), and acts effectively (i.e., gx = x for all g ∈ G implies
x = 0).

2.1. Roots and weights. Let M(G) denote the set of all mirrors — the hyper-
planes in V such that the orthogonal reflections across them belong to the group G.
Mirrors split the space V into connected components, whose closures are polyhedral
cones. These cones are called Weyl chambers. It is known that Weyl chambers
are actually simplicial cones, i.e., they have exactly dim V faces of codimension 1.
These faces are called the walls of the chamber. The simpliciality of Weyl cham-
bers implies that each Weyl chamber has exactly dimV extreme rays, and each
extreme ray does not belong to exactly one wall of the chamber. Unit normals to
the mirrors are called roots, the set of all roots is denoted by RG.

Fix a Weyl chamber C. Consider the roots ni(C), 1 ≤ i ≤ dim V, perpendicular
to its walls, directed inwards with respect to the chamber. We call these funda-
mental or simple roots. It is known that the group G is generated by reflections
across the walls (i.e., across the mirrors containing the walls) of a Weyl chamber,
i.e., by the operators Ri = I − 2ni ⊗ ni, 1 ≤ i ≤ dim V. Consider the vectors
ωj(C), 1 ≤ j ≤ dim V, such that 〈ni, ωj〉 = cjδ(i − j), cj > 0. These vectors are
called the fundamental weights associated with the chamber C. The exact values
of cj are not important for our purposes (for a standard normalization of fundamen-
tal weights see [3]). One can easily see that the fundamental weights are directed
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along the extreme rays of C. The set of all weights (i.e., those associated with any
Weyl chamber) is denoted by WG. The sets RG and WG are fibered into G-orbits.
It is known that the group G acts simply transitively on the set of Weyl chambers
(i.e., for every two chambers there exists exactly one element of G transforming one
of them onto the other). This immediately implies that the G-orbit of any vector
x (we denote it by Orb G x) intersects a Weyl chamber at exactly one point, let
x∗(C) denote the only point of C ∩ Orb G x. Consider mG(x, y) = maxg∈G〈gx, y〉.
It is known (see [16]) that for any Weyl chamber C

mG(x, y) = 〈x∗(C), y∗(C)〉 ≥ 0.

In fact, one can easily show that mG(x, y) > 0 for irreducible Coxeter groups,
provided x, y are both nonzero.

2.2. Coxeter graphs. Since a Coxeter group G is generated by reflections across
the walls of any Weyl chamber, all information about the group is encrypted in the
geometry of a Weyl chamber. In its turn the whole geometry of a Weyl chamber
is described by the angles between its walls. Since the group is finite, these angles
must be π/k, k ∈ Z+, k ≥ 2. There is a wonderful way to encode the information
about the angles in a graph. Let Γ(G) denote the Coxeter graph of G, constructed
as follows: the set vert (G) of vertices of the graph is in a one-to-one correspondence
with the set of walls of a fixed Weyl chamber C, and two vertices are joined by an
edge if and only if the angle between the related walls is π/k, k ≥ 3, and k − 2
is the multiplicity of the edge. Since the group acts transitively on the set of
Weyl chambers, the Coxeter graph does not depend upon the choice of a Weyl
chamber. Every fundamental root ni(C) is naturally associated with a wall of the
Weyl chamber C, so it is associated with a vertex of Γ(G). Every fundamental
weight ωj(C) is naturally associated with a unique wall of C (namely, with the one
it does not belong to), so it is naturally associated with a vertex π of the graph
Γ(G). One can easily see that all weights from the same G-orbit are associated with
the same vertex, so there is a one-to-one correspondence between the G-orbits of
weights and the vertices of Γ(G). Let π(ω) denote the vertex of Γ(G) associated
with the G-orbit of ω ∈ WG.

An end vertex of the Coxeter graph Γ(G) is any vertex connected to only one
other vertex. A weight associated with an end vertex of Γ(G) is called an extremal
weight, the set of extremal weights is denoted by EG.

A Coxeter graph is branching if it contains a vertex (called a branching ver-
tex) connected to at least three other vertices. Otherwise, the graph is non-
branching.

It is known that a Coxeter group G is irreducible if and only if its Coxeter graph
Γ(G) is connected. All connected Coxeter graphs are classified, so all irreducible
Coxeter groups are classified (see [3], [1], [7]). In particular, the classification shows
that a connected Coxeter graph contains at most one branching vertex, the branch-
ing vertex is connected to exactly three other vertices, and all edges of a branching
graph have multiplicity 1.

2.3. Supports and stabilizers. Fix a Weyl chamber C, let ωi, 1 ≤ i ≤ dim V,
denote the related fundamental weights, and for each i, 1 ≤ i ≤ dim V, let Wi

denote the wall of C not containing ωi. Since C is a simplicial cone then for every
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a ∈ V there exists a unique decomposition

a∗(C) =
∑

i

λi(a∗(C))ωi, λi(a∗(C)) ≥ 0.

Obviously,

λi(a∗(C)) =
〈a∗(C), ni〉

ci
.

Introduce the support of a as follows:

supp G a = {πi ∈ vert (G) : λi(a∗(C)) > 0} = {πi ∈ vert (G) : a∗(C) /∈ Wi}.
One can easily show that supp G a does not depend upon the choice of the chamber
C, and it actually depends only upon the G-orbit of a.

For a ∈ C let
Stab G a = {g ∈ G : ga = a}

It is well known (see, e.g., [3]) that this subgroup is generated by reflections across
the walls Wi of C, containing a. This subgroup is not a Coxeter group since the
intersection of all mirrors containing a (we denote this intersection by V a) is a
nontrivial subspace of fixed vectors. Let us restrict the action of this subgroup to
its invariant subspace Va = (V a)⊥. Thus, the nontrivial fixed vectors are cut off,
and we get a Coxeter group

Ga = Stab G a|Va

acting on this subspace Va. Its Coxeter graph can be computed as follows (see [16]):

Γ(Ga) = Γ(G) \ supp G a.

The latter means that all the vertices from supp G a are erased, as well as all
adjacent edges. So, if ω is a fundamental weight then Vω = ω⊥ and Γ(Gω) =
Γ(G) \ {π(ω)}. If ω is an extremal fundamental weight then the group Gω acts
irreducibly on ω⊥, since the graph Γ(G) \ {π(ω)} is connected.

We recall the definitions of several Coxeter groups together with their extremal
weights.

2.4. Classification of irreducible Coxeter groups. The following are descrip-
tions of all finite irreducible Coxeter groups. First let us examine the four infinite
families An, Bn, Dn, and I2(n).

Define Permn+1 to be the group of linear operators acting on Rn+1 by permuta-
tions of the canonical basis {e1, e2, e3, ..., en+1}. We see that e =

∑n+1
i=1 ei is a fixed

vector; now restrict the action to the invariant subspace e⊥.

Definition 2.1. An = {T |e⊥ : T ∈ Permn+1}.
The related Coxeter graphs are:

,...

Vectors ω1 = e1 − e/(n + 1), ωn = e/(n + 1) − en+1 are extremal fundamental
weights.

Note for future reference that ω1 is the orthogonal projection of the vector e1 onto
the subspace e⊥. Also, An does not contain −I (where I is the identity operator),
and ωn ∈ Orb An(−ω1).

Definition 2.2. Bn is the group of linear operators acting on Rn by taking ei to
p(i)eσ(i), where σ is a permutation of {1, ..., n} and p(i) = ±1 for 1 ≤ i ≤ n.
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The related Coxeter graphs are:

,...

4

The vectors ω1 = e1, ωn = e = e1 + · · ·+ en are extremal fundamental weights.

Definition 2.3. Dn = {T ∈ Bn : T performs an even number of sign changes}.
The related Coxeter graphs are:

,...

Definition 2.4. For n ≥ 3, I2(n) is the dihedral group of order n, i.e., the group
of symmetries of a regular n-gon. This is the group of operators acting on R2

generated by reflections across the lines y = 0 and y = tan(π/n)x.

The related Coxeter graphs are:

Now, let us list the exceptional groups F4,H3,H4, E6, E7, E8. For these groups
we give their Coxeter graphs only (in the order they are listed):

4

5

5

So, there exist four infinite families of irreducible Coxeter groups (An, Bn, Dn, I2(n))
plus six exceptional groups (E6, E7, E8, F4,H3,H4). Each subscript indicates the
dimension of the space V where the group naturally acts. Coxeter graphs of
An, Bn, I2(n), F4,H3,H4 are non-branching, Coxeter graphs of Dn, E6, E7, E8 are
branching.
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3. The Main Theorem

Theorem 3.1. (a) Let G = An, Bn, I2(n), F4 or H3. Then

Extr (G◦) = BG.

(b) Let G = Dn, E6, E7 or E8. Then

Extr (G◦) % BG.

We prove the first assertion of this Theorem case by case. If G = An or Bn, then
the assertion is essentially the classical Birkhoff Theorem [2] – see details below.
The case G = I2(n) was first proved in [10], but here we offer a much easier proof.
The cases G = F4 and G = H3 are proved by computer calculations which we
describe below. The second assertion — the case of the branching Coxeter graph
— was proved in [10]; we reproduce the proof below.

4. Convex Geometry and Irreducible Coxeter Groups

As it has been already mentioned in the Introduction, we equip the space End V
with the scalar product (T, S) = trace (TS∗), and we identify x⊗ y with the rank
1 operator z → x〈z, y〉. One can easily check that (x⊗ y)∗ = y⊗x, trace (x⊗ y) =
〈x, y〉, (x⊗ y)(w ⊗ t) = (x⊗ t)〈y, w〉.
4.1. Polar Sets. As usual, if we have a real Euclidean space W with a scalar
product (., .) then for a subset U ⊂ W we consider its polar set U◦ = {z ∈ W :
∀ x ∈ U (x, z) ≤ 1}. The set U◦ is a closed convex subset of W , containing 0.
One can easily verify that U◦ = (conv U)◦. By the Bipolar Theorem, (U◦)◦ =
conv (U ∪ {0}). So if 0 ∈ conv G then conv G = ((conv G)◦)◦ (we may omit the
closure since conv G is a closed polyhedron). We show that 0 is an interior point
of conv G, see Lemma 4.2. This implies that the set (conv G)◦ is compact and
therefore, by the Krein-Milman Theorem, this set is the closed convex hull of its
extreme points. So the set Extr (conv G)◦ provides a nice description of the set
conv G :

conv G = (Extr (conv G)◦)◦ = {T ∈ End V : (T, b) ≤ 1 ∀ b ∈ Extr (conv G)◦}.
This formula and the definition of extreme points show that the elements of the set
Extr (conv(G)◦) are properly scaled normals to the faces of the polyhedron conv G.

4.2. Convex bodies associated with Coxeter groups. All results of this sub-
section can be found in [10] – some without proofs.

Let us start with the following lemma which can be deduced from the Burnside
Theorem, but we prefer to give a simple direct proof, especially because the idea is
also used in the proof of Theorem 4.4.

Lemma 4.1. Let G be an irreducible Coxeter group. Then the set G spans the
whole space End V.

Proof. Fix a Weyl chamber C. As before let ni, i = 1, 2, ..., dim V, denote the
related fundamental roots (i.e., the unit normals to the walls of C), associated
with the vertices πi of the Coxeter graph Γ(G). These roots form a basis of V.
The group G is generated by the reflections Ri = I − 2ni ⊗ ni, i = 1, 2, ..., dim V.
Since I ∈ G, all operators ni ⊗ ni are in span G. Considering the products RiRj =
I− 2ni⊗ni− 2nj ⊗nj +4〈ni, nj〉ni⊗nj such that the vertices πi, πj are connected
by an edge (and therefore 〈ni, nj〉 6= 0), shows that all such operators ni⊗nj are in
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span G. Now choose three vertices πi, πj , πk such that the second one is connected
by edges to the first and the third ones. Considering the product RiRjRk ∈ G
and using the previous remarks, we show that ni ⊗ nk ∈ span G. Repeating the
same trick, we show that all operators ni ⊗ nj are in span G, provided the vertices
πi, πj can be connected by a simple path in Γ(G). Since the Coxeter graph of an
irreducible group is connected, the Lemma is proven. ¥
Lemma 4.2. Let G be an irreducible Coxeter group. Then 0 is an interior point
of the set conv G.

Proof. Consider the arithmetic mean avG of the elements of G. The group G ob-
viously fixes every element in the range of avG, but this irreducible group cannot
have nonzero fixed vectors, therefore avG = 0. So, 0 = avG ∈ conv G. Assuming
that 0 is not an interior point of conv G, we find a nonzero operator b ∈ End V
such that (g, b) ≤ 0 for all g ∈ G. Therefore either G ⊂ {a ∈ End V : (a, b) = 0},
or (avG, b) < 0. The first is impossible because G spans the space End V , and the
second is impossible because avG = 0. ¥

This result implies that the set G◦ = (conv G)◦ is compact and therefore G◦ =
conv Extr G◦.

Noticing that the set BG consists of rank 1 operators and is invariant under
pre- and post-multiplications by operators from G we arrive to the following result,
which will be needed for Corollary 4.5:

Corollary 4.3. Let G be an irreducible Coxeter group. Then 0 ∈ conv(BG).

Theorem 4.4. BG = (Extr G◦) ∩ ( rank 1 tensors )

Proof. One of the main results of [16] asserts that

BG = Extr conv(G◦ ∩ ( rank 1 tensors )).

This is a rather deep result closely connected with the approach to interpolation of
operators outlined in the Introduction.

Let us prove that BG ⊂ Extr G◦. This will obviously imply the assertion of the
Theorem.

Choose two extremal fundamental weights ω, τ belonging to a Weyl chamber
C, such that π(ω) 6= π(τ). It suffices to show that (ω ⊗ τ)/mG(ω, τ) ∈ Extr G◦.
Consider the set M = {g ∈ G : (g, ω⊗ τ) = 〈gτ, ω〉 = mG(τ, ω) = mG(ω, τ)}. Since
for any g ∈ G we have (g, ω ⊗ τ) = 〈gτ, ω〉 ≤ mG(ω, τ), convM is a face of conv G
and all we need to show is that its dimension is maximal, i.e., to prove that M
spans End V .

Define P = {hg : h ∈ Stab G(ω), g ∈ Stab G(τ)}. Obviously, P ⊂M.
Let ni, 1 ≤ i ≤ N = dim V, denote the fundamental roots associated with

the chamber C; we assume that all roots are of unit length. Let ωi, 1 ≤ i ≤ N,
denote the related fundamental weights, we assume that τ = ω1, ω = ωN . Let
Rj = I − 2nj ⊗ nj be the corresponding reflections. Recall that Stab G(ωi) is
generated by {Rj : j 6= i}.

Obviously, I ∈ Stab G(ω1)
⋂

Stab G(ωN ). Also, note Rj ∈ Stab G(ω1) for all
1 < j ≤ N , and Rj ∈ Stab G(ωN ) for all 1 ≤ j < N . Thus, for all 1 < j ≤ N, nj ⊗
nj ∈ span Stab G(ω1). Similarly, for all 1 ≤ j < N, nj ⊗ nj ∈ span Stab G(ωN ).

Choose any i, j such that 1 < i, j ≤ N . Let πi = πk1 , πk2 , . . . , πkr = πj be
a simple path in Γ(G), connecting πi to πj . Such a path exists since Γ(G) is
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connected. For all 1 ≤ l ≤ r, we see that kl 6= 1, so nkl
⊗ nkl

∈ span Stab G(ω1).
Then the product (nk1 ⊗ nk1)(nk2 ⊗ nk2) . . . (nkr ⊗ nkr ) is also in span Stab G(ω1).
Since

(nk1 ⊗ nk1)(nk2 ⊗ nk2) . . . (nkr
⊗ nkr

)
= 〈nk1 , nk2〉〈nk2 , nk3〉 . . . 〈nkr−1 , nkr 〉(nk1 ⊗ nkr )

and for any 1 ≤ l < r, 〈nkl
, nkl+1〉 6= 0 (the vertices πkl

and πkl+1 are joined in
Γ(G)), nk1 ⊗ nkr

= ni ⊗ nj ∈ span Stab G(ω1) for all 1 < i, j ≤ N . Repeating the
same argument for Stab G(ωN ) yields ni⊗nj ∈ span Stab G(ωN ) for all 1 ≤ i, j < N .

Choose πm adjacent to π1. Now (n1⊗n1)(nm⊗nN ) ∈ span (P). Since 〈n1, nm〉 6=
0, n1 ⊗ nN ∈ span (P).

To show that nN ⊗ n1 ∈ span (P) requires a slightly more refined argument.
Since the system {ni : 1 ≤ i ≤ N} is a basis in the space V , and the system
{ωi : 1 ≤ i ≤ N} is biorthogonal to this basis, then one can easily show that

I =
N∑

i,j=1

〈ωi, ωj〉nj ⊗ ni

Notice that 〈ωi, ωj〉 6= 0 (in fact, > 0) for any 1 ≤ i, j ≤ N, because ωi and
ωj are in the same Weyl chamber, and G is irreducible. For all (i, j) 6= (N, 1),
ni ⊗ nj ∈ span (P), and I ∈ span (P), so

I−
∑

1≤i,j≤N
(i,j) 6=(N,1)

〈ωi, ωj〉ni ⊗ nj = 〈ωn, ω1〉nN ⊗ n1

is in span (P). Therefore, nN ⊗ n1 ∈ span (P).
Thus, for all 1 ≤ i, j ≤ N, ni⊗nj ∈ span P. Since {ni⊗nj : 1 ≤ i, j ≤ N} form

a basis for End V and P ⊂M, we see that M spans End V as required. ¥
The next result easily follows from the previous ones and the Bipolar Theorem:

Corollary 4.5. The following are equivalent:
(1) BG

◦ ⊂ conv G.
(2) BG

◦ = conv G.
(3) Extr (G◦) = BG.
(4) Extr (G◦) ⊂ BG.

5. The Proof of Theorem 3.1 for the groups An and Bn

In this section we essentially reproduce the considerations from [10].
Birkhoff’s theorem can be reformulated as follows:

Theorem 5.1. Extr A◦n = BAn .

Proof. Recall that e =
∑n+1

i=1 ei. Definition 1.1 means that T ∈ Ωn+1 if and only
if Te = e, T ∗e = e and T transforms the positive orthant of Rn+1 into itself. So,
e⊥ is invariant under T ∈ Ωn+1. Therefore T transforms the intersection of the
positive orthant with the affine hyperplane

1
n + 1

e + e⊥

into itself. It is easy to see that this intersection is precisely conv Orb Permn+1 e1.
Therefore T also transforms the set S – the orthogonal projection of this intersection
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onto the subspace e⊥ – into itself. Since ω1 = proj d⊥ e1 (see the description of An

in Section 2) then

S = proj e⊥ conv Orb Permn+1 e1 = conv Orb An
proj e⊥ e1 = conv Orb An

ω1

It is known (see [16]) that

Extr (Orb An
ω1)◦ =

1
mG(ω1, ωn)

Orb An
ωn.

So we conclude that TS ⊂ S if and only if (T, hωn ⊗ gω1) = 〈Tgω1, hωn〉 ≤
mG(ω1, ωn) for all g, h ∈ An. Since ω1 ∈ Orb An

(−ωn) and ωn ∈ Orb An
(−ω1), the

sets {hωn ⊗ gω1 : g, h ∈ An} and {gω1 ⊗ hωn : g, h ∈ An} coincide. Therefore
T ∈ Ωn+1 if and only if Te = e, Te⊥ ⊂ e⊥ and T |e⊥ ∈ (BAn

)◦. This means
that Extr (Ωn+1|e⊥)◦ ⊂ BAn . By the Birkhoff Theorem, Extr Ωn+1 = Permn+1, so
(Ωn+1)◦ = (Permn+1)◦ and, since both Ωn+1 and Permn+1 leave e⊥ invariant, we
get

Extr A◦n = Extr (Permn+1 |e⊥)◦ = Extr (Ωn+1|e⊥)◦ ⊂ BAn .

According to Lemma 4.5, this proves the result.
¥

Definition 5.2. An n× n matrix (aij) is called absolutely bistochastic if

for every j, 1 ≤ j ≤ n,

n∑

i=1

|aij | ≤ 1,

n∑

i=1

|aji| ≤ 1.

Let fn be the set of all absolutely bistochastic n× n matrices.

The next Lemma follows from the Birkhoff Theorem — see, for example, [12].

Lemma 5.3. Bn = Extr (fn)

The desired description is now (almost) immediate.

Theorem 5.4. Extr B◦
n = BBn .

Proof. By Lemma 4.5, it suffices to prove (BBn)◦ ⊂ conv(Bn). However, by Lemma
5.3, this statement is equivalent to (BBn)◦ ⊂ fn. Let A = (aij) ∈ (BBn)◦. Let q =∑n

j=1 εjej , εj = ±1. All such q form the Bn-orbit of the extremal fundamental
weight ωn. Then (A, q⊗ei) = 〈Aei, q〉 ≤ 1 for all q ∈ Q, 1 ≤ i ≤ n. This is equivalent
to

∑n
j=1 εjaij ≤ 1 for all εj = ±1, 1 ≤ i ≤ n, or

∑n
j=1 |aij | ≤ 1. Similarly, using

(A, ei ⊗ q), deduce
∑n

i=1 |aij | ≤ 1. So A ∈ fn. ¥

6. A proof of Theorem 3.1 for I2(n).

Recall that the group I2(n) is a dihedral group acting on R2, i.e., the group of
symmetries of a regular n-gon, with one vertex on the positive x-axis.

Let Rot (θ) be the linear operator performing counter-clockwise rotation by the
angle θ. Let

Refl (θ) = Rot (θ)
(

1 0
0 −1

)
Rot (−θ) =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)

be the linear operator performing reflection across the line at an angle θ from the
x-axis in the counter-clockwise direction.

One can easily see that every orthogonal operator in R2 is either a rotation,
or a reflection, depending upon whether its determinant is +1 or −1. (Indeed, its
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eigenvalues are either a pair of mutually conjugate complex numbers on the unit
circle, or they are ±1; in the first case the determinant is 1 and this operator is
obviously a rotation, in the second case the determinant is −1 and the operator is
obviously a reflection.)

Let

Rot n = {Rot (2πk/n) : 0 ≤ k < n}, Refl n = {Refl (πk/n) : 0 ≤ k < n}.
Obviously, I2(n) ⊃ Rot n ∪Refl n . Actually, these two sets coincide — a regular
n-gon is not invariant under other rotations and reflections.

Lemma 6.1.

I2(n) = Rot n ∪Refl n .

Each of the sets Rot n, Refl n spans a two-dimensional subspace in End (R2).
There are exactly n elements in each of these two sets, and they are equidistributed
on the unit circles in the related subspaces. So, conv Refl n and conv Rot n are
regular n-gons in the related two-dimensional subspaces of the four-dimensional
space End R2.

The following Lemma is easily verified.

Lemma 6.2. The two-dimensional subspaces spanned by Rot n and Refl n are mu-
tually orthogonal.

Corollary 6.3. Every face Φ of conv I2(n) of maximal dimension is uniquely rep-
resentable as

Φ = conv(φ ∪ ψ)

where φ is a side of the regular n-gon conv Rotn, and ψ is a side of the regular
n-gon conv Refln.

Conversely, for any two sides φ ⊂ conv Rotn , ψ ⊂ conv Refln the set conv(φ∪ψ)
is a face of conv I2(n) of maximal dimension.

Proof. Let Φ be a face of conv I2(n) of maximal dimension. Then all operators from
I2(n) are in a half-space defined by the hyperplane containing Φ. This hyperplane
does not contain the origin, therefore it does not contain span Rot n or span Refl n .
Therefore its intersections with these subspaces are hyperplanes in these subspaces.
Φ must contain four linearly independent elements of I2(n). Since a hyperplane
in a two-dimensional subspace can contain no more that two linearly independent
elements, Φ must contain exactly two linearly independent rotations and exactly
two linearly independent reflections. Since conv Rot n and conv Refl n are in a half-
space defined by the hyperplane, Φ contains sides φ and ψ of the regular n-gons
conv Rot n and conv Refl n, respectively. Thus Φ = conv(φ ∪ ψ).

Now let φ and ψ be sides of the convex n-gons conv Rot n and conv Refl n, respec-
tively. Since these convex sets are in mutually orthogonal subspaces, conv(φ ∪ ψ)
contains four linearly independent elements of I2(n), so it defines a face of conv I2(n)
of maximal dimension. ¥

Corollary 6.4. conv I2(n) has exactly n2 faces of maximal dimension.

Lemma 6.5. card (BI2(n)) = n2.
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Proof. Obviously, the cone bounded by the lines y = 0 and y = tan(π/n)x is a Weyl
chamber for I2(n). Therefore the vectors ω1 = (1, 0) and ω2 = (cos(π/n), sin(π/n))
are the (extremal) fundamental weights. Therefore

BI2(n) = {gω1 ⊗ hω2, hω2 ⊗ gω1 : g, h ∈ I2(n)}.
Note that card (Orb I2(n) ωi) = n for i = 1, 2. If n is even then −I ∈ I2(n) and since
(−ω) ⊗ (−τ) = ω ⊗ τ we get card (BI2(n)) = (2)(n)(n)/2 = n2. If n is odd then
−I /∈ I2(n), and −ω1 ∈ Orb I2(n) ω2. So again card (BI2(n)) = (2)(n)(n)/2 = n2. ¥

So, the number of Birkhoff tensors card (BI2(n)) equals the overall number of
faces of conv I2(n). Using Theorem 4.4, we arrive at the following result, which
proves Theorem 3.1 for G = I2(n).

Corollary 6.6. Extr (I2(n))◦ = BI2(n).

This result was obtained in [10] by lengthy computations.

7. Extreme elements of (D4)◦

Theorem 7.1.
Extr (D4)◦ = BD4

⋃
{gAh : g, h ∈ D4},

where

A =
1
4




−2 2 0 −1
2 −2 0 −1
−1 −1 −1 0
0 0 0 1


 .

This result was obtained in [10] by a computer calculation (in exact arithmetic),
using the cdd program, written by Komei Fukuda [4]. We discuss this program
below in Section 10.

Obviously, the matrix A is of rank 3, so BD4 $ Extr (D4)◦. Actually what we
need is the existence of a matrix of rank greater than 1 in Extr (D4)◦. It is not hard
to check by hand that the matrix A belongs to Extr (D4)◦, i.e., to verify that the
scalar product of A with every element of D4 does not exceed 1 and to explicitly
find 16 linearly independent elements of D4 whose scalar products with this matrix
are exactly 1. So, the proof of the Conjecture for the group D4 does not formally
depend upon the use of computer calculations.

8. Coxeter groups with branching graphs

In this Section we prove Part (b) of the Conjecture, see [10].

Theorem 8.1. Let G be a finite irreducible Coxeter group with a branching Coxeter
graph Γ(G). Then not all elements of Extr (conv G)◦ are of rank 1, i.e., BG (
Extr (conv G)◦.

Proof. It is known from the classification of connected Coxeter graphs (see, e.g.,
[3]) that every branching Coxeter graph contains a (branching connected) graph
Γ(D4) as a subgraph. The statement of Theorem is valid for this group — see the
previous Section. So we may assume that Γ(G) 6= Γ(D4). Therefore there exists
an end vertex π such that the graph Γ(G) \ {π} is a branching connected Coxeter
graph.
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Claim. If all elements of Extr (conv G)◦ are of rank 1, then the same is true for
Extr (conv H)◦ where H is a Coxeter group such that Γ(H) = Γ(G) \ {π}.

This claim, together with the above considerations, easily leads to a proof of the
Theorem.

Let all elements of Extr (conv G)◦ be of rank 1. Let ω be an extremal fundamental
weight associated with the vertex π. We may assume that its length is 1.

Consider the Coxeter group Gω = Stab G ω|ω⊥ and denote it by H. Then

Γ(H) = Γ(G) \ {π}.
Since π is an end vertex, this graph is connected and therefore H is an irreducible
group. Consider the hyperplane Π = {T ∈ End V : (T, ω ⊗ ω) = 0}. Note that

Stab G ω = G ∩ (Π + I)

This immediately follows from the fact that the elements of G are all orthogonal
operators. Also, the affine hyperplane (Π + I) is a support hyperplane of the
polyhedron conv G, i.e.,

G ⊂ {T ∈ End V : (T, ω ⊗ ω) ≤ 〈ω, ω〉}
Therefore the faces of maximal dimension of the polyhedron conv(Stab G ω) are
intersections of faces of conv G with the hyperplane Π + I. We have assumed that
the normals to all faces of conv G are of rank 1. We obtain the group H from the
group Stab G ω by restricting the action of the latter to its invariant subspace ω⊥.
We can view this as follows:

Let P denote the orthogonal projection of V onto the subspace ω⊥. Then the
operator T 7→ PTP is an orthogonal projection in End V. Then H = P (Stab G ω)P.
Therefore the faces of maximal dimension of conv H are projections of the faces of
maximal dimension of conv(Stab G ω). Thus the normals to faces of conv(H) are of
the form PbP , where b ∈ Extr (conv G)◦. But all these tensors are of rank 1. So
the Claim is proven, which completes the proof of Theorem. ¥

9. Computer tools

The results of the previous sections leave the following exceptional groups for
which Conjecture 1.4 still needs verification: namely the groups F4, H3 and H4.
In this Section we discuss computer tools which have enabled us to verify the
Conjecture for G = F4, H3, and we also discuss some approaches which hopefully
will in the future allow us to verify the Conjecture for the remaining case G = H4.
All programs we have written are available at http://www.math.wm.edu/ zobin/.
Our main tool is a cdd program which calculates the extreme elements of a polytope
given by a system of linear inequalities, which is exactly what G◦ is. We must be
able to write down the system of inequalities as an input file, so we need to obtain a
list of matrices corresponding to the operators which are the elements of our group
G. This is the first computational problem we address.

9.1. Matrix Representation of Coxeter Groups. All information about a Cox-
eter group is encoded in its graph, but going from the graph to a presentation of
elements is not easy, and the computer can help here.

We wrote a program in C++ which, given a Coxeter graph, lists the matrices
of all elements of the associated group in a natural orthonormal basis, together
with Birkhoff tensors, fundamental roots and weights, generators, etc. To explain
this program, we’ll follow its logic and note its output for H3. We assume that
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the input graph has n vertices, labeled with the associated fundamental weights
ω1, ω2, . . . , ωn.

Although the program takes a graph as its input, the computer is happier working
with a matrix. Thus, the computer represents the given graph as a Cartan matrix:

Definition 9.1. Consider the Coxeter graph Γ(G) on n vertices. Choose an order-
ing 4 of the vertices (for a non-branching graph there are two natural orderings of
the vertices, going along the path). So, label the vertices π1, π2, · · · , πn and assume
that as i goes from 1 to n the vertices are arranged according to the chosen order-
ing. Then we have an ordering W1,W2, · · · ,Wn of the walls in a Weyl chamber, as
well as an ordering r1, r2, · · · , rn of the fundamental roots. The modified Cartan
matrix C(G, 4) associated with this ordering of the fundamental roots is the n×n
matrix (aij) with

aij = − cos(π/(k(i, j) + 2)) = 〈ri, rj〉
for i 6= j, and aii = 1 = 〈ri, ri〉. Here k(i, j) is the multiplicity of the edge joining
the vertices πi and πj of the graph, and ri are the fundamental roots. So,

C(G, 4) = (〈ri, rj〉)1≤i,j≤n.

For instance, choosing the ordering from the left to the right for the vertices of
Γ(H3) (see 2.4) we get

C(H3, 4) =




1 − cos(π/5) 0
− cos(π/5) 1 − cos(π/3)

0 = cos(π/3) 1




=




1 −(1 +
√

5)/4 0
−(1 +

√
5)/4 1 −1/2

0 −1/2 1


 .

The natural orthonormal basis e1, e2, . . . , en which we are going to use is ob-
tained from the basis of fundamental roots r1, r2, · · · , rn by the Gram–Schmidt
orthogonalization procedure.

Clearly then

r1 = λ11e1,

r2 = λ21e1 + λ22e2,

...
rn = λn,1e1 + · · ·+ λn,nen,

for some λij . It is, in fact, these scalars λij that we are after. These scalars form
a lower-triangular matrix Λ. Obviously, λ11 = 1.

One can immediately see that

ΛΛt = (〈ri, rj〉)1≤i,j≤n = C(G, 4).

So, the matrix Λ is nothing else but the Cholesky factor of C(G,4). There are
numerous programs for efficient Cholesky factorization.

For H3, this gives us approximately

Λ(H3) ≈



1 0 0
0.809 . . . 0.588 . . . 0

0 0.851 . . . 0.526 . . .


 .
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Next, the program computes the fundamental weights. The fundamental weights
form a basis dual to the basis of the fundamental roots. So if W (G, 4) is the
“matrix of fundamental weights” of G in which each column gives the coordinates
of a fundamental weight in the basis e1, e2, · · · , en, then W (G, 4) = (Λ−1)t. This
is an easy calculation for the program to perform. The program gives

W (H3,4) ≈



1 −1.376 . . . 2.227 . . .
0 1.701 . . . −2.753 . . .
0 0 1.902 . . .


 .

Now we want the matrices for the elements of G. Getting a representation
requires generators; consider the generators Ri = I − 2ri ⊗ ri. Their matrices in
our basis are gi = I− 2Λt

iΛi where Λi the i-th row of the matrix Λ.
Generating all the elements requires iterating. We initialize a list with the n

generators. At each iteration, multiply each element in the list with every other
element in the list; if the product is not in the list, add the new matrix to the list.
If at any iteration, no new matrices are created, then stop.

This näıve algorithm generates the elements of H3 quite quickly, but it takes too
long to enumerate the elements of the much larger group H4. A more intelligent
approach is required; we can keep the previous method, but we have to reduce the
number of spurious matrix multiplications. With each element in the list, store the
length of the element, i.e., the minimal number of generators whose product is
the element. Clearly, for the generators themselves, this number is 1. On the k-th
iteration, then, we simply take all elements of length k, and pre- and post-multiply
them by the generators to get all elements of length k + 1. This is a pretty simple
optimization, but it pays off quite well.

We intend to use this program to compile the input file for the cdd program,
which actually computes the extreme elements of G◦.

With a list of elements in hand, writing down the Birkhoff tensors is easy. Since
we’ve generated the fundamental weights, we can find a particular Birkhoff tensor
ω⊗τ . To find the others, we iterate through all g, h ∈ G and add gω⊗hτ to the list
of tensors. Each time we add a tensor to the list, however, the program must check
that the new tensor is in fact different from all the previously generated tensors.

Now that we can explore H3 with the computer, we are ready to tackle the
conjecture.

10. Computer Proofs of the Conjecture for F4 and H3.

We want to show that Extr G◦ = BG for G = F4, H3. We’ll verify this by
finding Extr G◦ with the aid of a computer. The algorithm we employ is the
Double Description Method, otherwise known as Chernikova’s algorithm. A (non-
computer) calculation based on this algorithm was used in [18] for a solution of
a problem regarding the geometry of some orbihedra, see also [11] for another
approach to this problem.

Our exposition of this algorithm follows the one given in [5].

10.1. The Double Description Method. Given a finite set S in Rn, we want
to find Extr S◦. First we homogenize the problem by switching from S, to the cone
S′ = {λ({1} × S) ⊂ Rn+1 : λ ≥ 0}, and from the polar set S◦ to the dual cone

D(S′) = {v ∈ Rn+1 : ∀s ∈ S′, 〈s, v〉 ≥ 0}.
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Then the projections of extreme rays of the cone P (S′) to Rn are directed along
the vectors from Extr S◦, so the problem of finding the convex hull is merely a
disguise for the problem of enumerating the extreme rays of a polyhedral cone with
vertex at the origin.

The algorithm we use takes a polyhedral cone given by a system of homogeneous
linear inequalities and finds its extreme rays. As input, we have a matrix A, whose
rows are the coefficients of the linear inequalities defining the cone, in other words,
the normals to the faces of the cone. The matrix A describes a cone

P (A) = {v ∈ Rn+1 : Av ≥ 0}.
As output, we want a (n + 1) × m matrix R whose columns are vectors whose
linear combinations with non-negative coefficients give the whole cone P (A). So,
R provides an alternative description of this cone

P (A) = {v ∈ Rn+1 : ∃λ ∈ Rm, λ > 0, v = Rλ}.
The ordered pair (A,R) is called a double description pair; such a pair provides
two descriptions of the same cone.

Here of course there is a slight abuse of terminology, since we are identifying
matrices with the (non ordered) sets of their column or row vectors.

The columns of R include vectors directed along all of the extreme rays. But R
may also have other redundant columns. Clearly there exist many different matrices
R which form a double description pair with A.

The redundancy may be eliminated rather simply — we must omit all vectors
belonging to less than n independent boundary hyperplanes, i.e., turning less than
n independent inequalities (given by the rows of A) into equalities. The obtained
matrix is already unique — up to permutations of columns and scaling of each
column.

Simply put, the algorithm takes A and finds a double description pair (A,R).
The method is iterative. Let Ak be the matrix of the first k rows of A. Since An+1

is a simplicial cone, finding a matrix Rn+1 is easy: just solve An+1Rn+1 = I to get
a double description pair (An+1, Rn+1). Now iterate: suppose that for some Ak we
have a double description pair (Ak, Rk); we’d like to find an Rk+1 for Ak+1. Let
ak+1 be the (k +1)-st row vector of A; this vector determines a hyperplane cutting
Rn+1 into three pieces (two half-spaces and a hyperplane) as follows:

H+
k+1 = {v ∈ Rn+1 : 〈v, ak+1〉 > 0},

H0
k+1 = {v ∈ Rn+1 : 〈v, ak+1〉 = 0}, and

H−
k+1 = {v ∈ Rn+1 : 〈v, ak+1〉 < 0}.

Let r1, . . . , rj be the columns of Rk. The vector ak+1 will also partition these rays
into three sets

J+
k+1 = {ri : ri ∈ H+

k+1},
J0

k+1 = {ri : ri ∈ H0
k+1}, and

J−k+1 = {ri : ri ∈ H−
k+1}.

What is the relationship between Rk+1 and Rk? Clearly, J+
k+1 ⊂ Rk+1 and J0

k+1 ⊂
Rk+1, but there might be something we are missing. Indeed it is not hard to prove
the following lemma (see [5]):
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Lemma 10.1. Let (Ak, Rk) be a double description pair. Then so is (Ak+1, Rk+1)
where

Rk+1 = J+
k+1 ∪ J0

k+1 ∪M,

and
M = {span {u, v} ∩H0

k+1 : u ∈ J−k+1, v ∈ J+
k+1}.

By applying this lemma iteratively, we eventually find a matrix R forming a
double description pair (A,R). As it was mentioned earlier, this R might include
some extraneous rays; to ensure minimality of Rk+1 at each step with this näıve
approach, we assume that Rk is not redundant, and then we remove rays in Rk+1

that lie on fewer than n hyperplanes of Ak+1.
It is always better if such a program works incrementally, outputting the extreme

rays it has already calculated. This can be done by verifying feasibility of the vectors
from the non-redundant version of Rk, i.e., checking if they satisfy all inequalities
defining the cone. Then the feasible vectors should be listed and outputted as a
partial result. Note that non-feasible vectors from Rk should not be included in
this partial list, but they are needed to perform the next iteration.

To actually perform this iterative process by computer, we use the cdd program,
an implementation in C++ of the double description algorithm [4]. Although cdd
is essentially the algorithm presented above, it is packed with many optimizations.
These optimizations are not enough to make cdd the best ray enumeration algorithm
for all problems—there are more efficient algorithms for simplicial polyhedra—but
cdd is excellent for the degenerate (i.e., non-simplicial) case. Since the convex hulls
of Coxeter groups are degenerate polyhedra in operator space, cdd is particularly
well suited for finding Extr G◦ for G a Coxeter group.

10.2. Computing the convex hulls of F4 and H3.. To compute Extr G◦ with
the help of cdd we first need to prepare an input file, where we write down the
system of linear inequalities describing G◦ :∑

1≤i,j≤n

sijgji ≤ 1, g ∈ G.

Preparing such an input file is not too hard for relatively small groups like F4 and
H3, but it is not at all easy for H4, consisting of 14, 400 elements. So, we have
compiled the input files for F4 and H3 by hand, and for the case of H4 we have
used the input file compiled by Val Spitkovsky, who has applied quite sophisticated
programming tools to do this.

In the future we plan to generate these files with the help of our program listing
the matrices (gij) of all operators from the group G. This could be important for
verification of the Conjecture for the group H4, since we hope to introduce some
additional optimization into the cdd program (exploiting symmetries, a clever choice
of the ordering, etc) and we shall need a significant flexibility in preparing the input
file.

The double description method can be performed exactly in arithmetic over Q.
Since the matrices representing operators from the Coxeter group F4 in our basis
e1, e2, e3, e4 have rational entries, cdd can find Extr (F4)◦ exactly.

Theorem 10.2. Extr (F4)◦ = BF4 .

The situation is more complicated for H3: there is no basis in which the matrices
for the elements of H3 have rational entries (this is equivalent to the fact that H3



20 J. BRANDMAN, J. FOWLER, B. LINS, I. SPITKOVSKY, AND N. ZOBIN

and H4 are not crystallographic groups, see [3]). Nonetheless, the matrices of
the elements of H3 in our basis e1, e2, e3 are over the field Q(

√
5), the algebraic

extension of Q by
√

5.
To capitalize on this fact, we extended cdd to perform exact arithmetic over

Q(
√

5). Such arithmetic is easy to work with: an element of Q(
√

5) is identified
with an ordered pair (p, q) where p, q ∈ Q, i.e., (p, q) ∼= p + q

√
5. Elementary

algebra quickly verifies the following:

(p, q) + (p′, q′) = (p + p′, q + q′),
(p, q)(p′, q′) = (pp′ + 5qq′, pq′ + p′q),

(p′, q′)−1 =
(

p

p2 − 5q2
,

−q

p2 − 5q2

)
.

Our modified version of cdd computes Extr (H3)◦ exactly over Q(
√

5). We did this
in under a half hour on a Pentium III. By Theorem 4.4,

BG = (Extr G◦) ∩ (rank 1 tensors).

So it suffices to verify that for all v ∈ Extr (H3)◦, rank (v) = 1. The cdd output
verified this, thereby proving

Theorem 10.3. Extr (H3)◦ = BH3 .

11. Computer Attacks on H4.

The matrices of operators from H4 also belong to the field Q(
√

5). Although
in theory cdd can compute Extr (H4)◦, we can’t even come close in practice. The
group H3 has only 120 elements; H4 has 14, 400. The initial problem is memory: as
cdd iterates, it generates a plethora of extraneous rays. After a couple of hundred
iterations, the number of extraneous rays easily fills up all of memory.

However, our problem has a lot of symmetries and it is natural to try to use
these symmetries to reduce the volume of computations. Here we discuss some
steps which we have already taken in this direction and others which we hope to
carry out in the future

Since the group acts by multiplications on itself and this action is transitive, we
need only consider the faces of conv H4 containing I. This means that we are in
fact interested in whether the extreme rays of the cone

{S ∈ End V : ∀g ∈ H4 (S, g) ≤ (S, I)}
are of rank 1. So we stay in dimension 16 (instead of going to dimension 17 while
homogenizing). The memory requirements are reduced substantially in this way.
Nevertheless, the computation still takes too long.

A very important tool in reducing the amount of calculations in cdd is the
choice of ordering of the inequalities describing G◦, i.e., the choice of ordering in
the Coxeter group G. It seems that a clever choice of ordering could produce a
sharp drop in the amount of extraneous rays.

The cdd program calculates elements of Extr (H4)◦. But we already know a lot
of these elements, since BH4 is a subset of Extr (H4)◦. So what we actually need is
not the calculation of all extreme vectors but rather a verification that the convex
hull of known extreme vectors is already the set we are studying.
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11.1. Birkhoff faces. Here we outline another approach to our problem. Let us
say that a face of conv G is a Birkhoff face if some Birkhoff tensor is orthogonal
to this face. Because H4 is non-branching, the group generated by the operator
T 7→ T ∗ and pre- and post-multiplications by elements of H4 acts transitively on
the set of Birkhoff tensors, so each Birkhoff face can be transformed to any other
Birkhoff face by this group. So we may consider only Birkhoff faces containing
I. It is easy to list all operators from G belonging to a Birkhoff face containing I
orthogonal to ω ⊗ τ ∈ BG :

〈gω, τ〉 = (g, ω ⊗ τ) = (I, ω ⊗ τ) = 〈ω, τ〉 = 1 if and only if

g = hk, h ∈ Stab G τ, k ∈ Stab G ω.

To confirm the Conjecture we need to show that every Birkhoff face is adjacent to
only Birkhoff faces, i.e., every subface of a Birkhoff face comes from the intersec-
tion with another Birkhoff face. So we need to study the adjacencies of Birkhoff
faces. We have written a computer program computing the graph of adjacencies of
Birkhoff faces. It still takes too long to run it for H4. Description of Birkhoff sub-
faces (i.e., intersections of Birkhoff faces) is a challenging problem closely related
to many interesting topics, including a Word Problem for Coxeter groups, Bruhat
orderings, etc.

11.2. An application of Poincaré’s Theorem. Let us describe another possible
approach. Consider the following differential 15-form on the 16-dimensional space
End R4 :

Ω(x) =
16∑

i=1

xi

‖x‖2 dx1 ∧ · · · ∧i · · · ∧ dx16.

As usual, ∧i means that dxi is omitted. This form is orthogonally invariant, closed
outside of the origin and its integral over any 15-dimensional surface, which is
starlike with respect to the origin, is non-negative. By the Poincaré Theorem the
integrals of this form over the boundaries of all 16-dimensional bodies containing
the origin are the same. In particular they are equal to the easily computable
integral over a sphere centered at the origin. Let’s suppose that we could calculate∫
Φ

Ω where Φ is a Birkhoff face. Since the form is orthogonally invariant the integral
over the union of all the Birkhoff faces of conv H4 equals this integral multiplied
by the number of Birkhoff tensors. Since the integral over any face of conv H4 is
non-negative, we conclude that all faces are Birkhoff faces if and only if the integral
over the union of Birkhoff faces equals the integral over a sphere.

This approach, while certainly interesting, is still not efficient enough. To per-
form the needed numerical calculations would require integrating over a Birkhoff
face of conv H4. But to numerically integrate, we have to be able to test whether a
point is in a face of conv H4. Knowing the vertices of a face isn’t enough to perform
this test; we need to know the faces of a face, and this is again a problem for cdd.
But there are 480 points in the 15-dimensional Birkhoff face of conv H4. And sadly,
480 vertices is still too many points for cdd to handle.

12. Open Problems

Problem 12.1. Does Conjecture 1.4 hold for H4?
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Of course this problem could be solved by brute force, by simply using more
powerful computers. But it would be much more interesting and useful to optimize
the cdd program, to find clever orderings, etc.

It would be very interesting to develop a version of the cdd program taking
symmetries into account

Problem 12.2. Find a “classification-free” proof of Conjecture 1.4.

This is definitely the heart of the matter. We believe that a promising approach
is further study of Birkhoff faces and their subfaces. We have a reason to believe
that the structure of Birkhoff subfaces of lower dimensions is simpler.

Problem 12.3. Calculate Extr G◦ for irreducible branching Coxeter groups.

We believe that real progress in this problem will depend upon progress in the
previous problem.

Problem 12.4. Calculate Extr env G for irreducible branching Coxeter groups.
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