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Purpose The purpose of this article is to show why one of the conjectures given on the
Open Problems List fails, and to give a possible reformulation of the problem that may be true.

Introduction We fix a family of norms {| · |x}x∈R2 on the 2-jet space, that is they are
norms on polynomials of degree 2 over R2. We assume the norms satisfy the so-called ”Bounded
Distortion”, and ”Approximate Translation Invariance” properties. These norms generate a
norm on C2(R2) in the usual manner; we denote this norm by || · ||C2(R2). The conjecture on
the open problem list is the following:

Conjecture 0.1. Let I = {(x, 0) : −1.5 ≤ x ≤ 1.5} ⊂ R2, and Q = [−1, 1]2. Also suppose that
we are given a set of polynomials {P z}z∈I satisfying |P z|z ≤ 1, ∀z ∈ I. Also suppose that there
exists F0 ∈ C2(Q) such that Jz(F0) = P z, ∀z ∈ I. Then given ε > 0, there exists F ∈ C2(Q)
satisfying:

1. Jz(F ) = P z, ∀z ∈ I.

2. ||F ||C2(Q) ≤ 1 + ε.

The conjecture is false just because it fails along every vertical line. Pick the 2-jet space
norm which is the maximum of all the partial derivatives of order ≤ 2. Parametrize R2 by (x, y).
Suppose for example that P (0,0) = 1 + y. Assume that there exists an extension of {P z}z∈I to
all of Q with norm ≤ 2; call this extension F . We know that |∂yyF | is bounded by 2 on the
y-axis. Therefore since ∂yF (0, 0) = 1, we see that ∂yF (0, t) ≥ 0.5, ∀t ∈ [−0.25, 0.25] (From the
mean value theorem). By similar reasoning we see that F (0, 0.25) ≥ 1.125, and therefore any
extension has norm larger than some fixed constant, even though |P z|z ≤ 1, ∀z ∈ I.

Remark 0.2. The reason that the conjecture is false is because the family of norms are not
”natural”, to be made precise in the following sense:

Definition 0.3. A family of norms {| · |x}x∈Rn on the m-jet space is ”natural” if the following
holds ∀x ∈ Rn, and for all polynomials P of degree ≤ m:

|P |x = inf{||F ||Cm(Rn) : JxF = P} (1)

The following is due to Charlie Fefferman:
Given a family of norms on the m-jet space: {| · |x}x∈Rn satisfying the Bounded Distortion

and Approximate Translation Invariance properties. Then we may define a new family of norms
as follows:

|P |′x = inf{||F ||Cm(Rn) : JxF = P}, ∀x ∈ Rn (2)
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Remark 0.4. The m-jet space norms defined by (2) are natural. The reasoning goes as follows:

Given a Polynomial P of degree ≤ m, and given x ∈ Rn, we must show that:

|P |′x = inf{||F ||′Cm(Rn) : JxF = P}, ∀x ∈ Rn. (3)

Where ||F ||′Cm(Rn) := supx∈Rn |JxF |′x.

We note the following:

||F ||′Cm(Rn) = sup
x∈Rn

|JxF |′x ≤ ||F ||Cm(Rn)

The second inequality follows directly from (2).
Now implied by the preceding remarks is the following

|P |′x = inf{||F ||Cm(Rn) : JxF = P} ≥ inf{||F ||′Cm(Rn) : JxF = P}

Note that this is one direction of the equality we wish to prove, and the other direction is
trivial. Thus we have shown that the norms {| · |′x} are ”natural” m-jet norms.

With these remarks we can now state a reformulation of (0.1) that takes into account this
”natural” condition:

Conjecture 0.5. Let I = {(x, 0) : −1.5 ≤ x ≤ 1.5} ⊂ R2, and Q = [−1, 1]2. Also suppose that
we are given a set of polynomials {P z}z∈I satisfying inf{||F ||C2(R2) : JzF = P z} ≤ 1, ∀z ∈ I.
Also suppose that there exists F0 ∈ C2(Q) such that Jz(F0) = P z, ∀z ∈ I. Then given ε > 0,
there exists F ∈ C2(Q) satisfying:

1. Jz(F ) = P z, ∀z ∈ I.

2. ||F ||C2(Q) ≤ 1 + ε.

Note that this conjecture is essentially stating that for this specific setup we have a finiteness
number k#

ε = 1, ∀ε > 0. Also note that the following condition is probably too strong:

inf{||F ||C2(R2) : JzF = P z} ≤ 1

And should be replaced with something like:

inf{||F ||C2([−2,2]2) : JzF = P z} ≤ 1
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