Modification to one of the Charlie Problems

Arie Israel

September 8, 2008

Purpose The purpose of this article is to show why one of the conjectures given on the Open Problems List fails, and to give a possible reformulation of the problem that may be true.

Introduction We fix a family of norms $\{|\cdot|_x\}_{x\in\mathbb{R}^2}$ on the 2-jet space, that is they are norms on polynomials of degree 2 over \mathbb{R}^2 . We assume the norms satisfy the so-called "Bounded Distortion", and "Approximate Translation Invariance" properties. These norms generate a norm on $C^2(\mathbb{R}^2)$ in the usual manner; we denote this norm by $||\cdot||_{C^2(\mathbb{R}^2)}$. The conjecture on the open problem list is the following:

Conjecture 0.1. Let $I = \{(x,0) : -1.5 \le x \le 1.5\} \subset \mathbb{R}^2$, and $Q = [-1,1]^2$. Also suppose that we are given a set of polynomials $\{P^z\}_{z \in I}$ satisfying $|P^z|_z \le 1$, $\forall z \in I$. Also suppose that there exists $F_0 \in C^2(Q)$ such that $J_z(F_0) = P^z$, $\forall z \in I$. Then given $\epsilon > 0$, there exists $F \in C^2(Q)$ satisfying:

- 1. $J_z(F) = P^z, \forall z \in I.$
- 2. $||F||_{C^2(Q)} \le 1 + \epsilon$.

The conjecture is false just because it fails along every vertical line. Pick the 2-jet space norm which is the maximum of all the partial derivatives of order ≤ 2 . Parametrize \mathbb{R}^2 by (x, y). Suppose for example that $P^{(0,0)} = 1 + y$. Assume that there exists an extension of $\{P^z\}_{z \in I}$ to all of Q with norm ≤ 2 ; call this extension F. We know that $|\partial_{yy}F|$ is bounded by 2 on the y-axis. Therefore since $\partial_y F(0,0) = 1$, we see that $\partial_y F(0,t) \geq 0.5$, $\forall t \in [-0.25, 0.25]$ (From the mean value theorem). By similar reasoning we see that $F(0, 0.25) \geq 1.125$, and therefore any extension has norm larger than some fixed constant, even though $|P^z|_z \leq 1$, $\forall z \in I$.

Remark 0.2. The reason that the conjecture is false is because the family of norms are not "natural", to be made precise in the following sense:

Definition 0.3. A family of norms $\{|\cdot|_x\}_{x \in \mathbb{R}^n}$ on the *m*-jet space is "natural" if the following holds $\forall x \in \mathbb{R}^n$, and for all polynomials P of degree $\leq m$:

$$|P|_{x} = \inf\{||F||_{C^{m}(\mathbb{R}^{n})} : J_{x}F = P\}$$
(1)

The following is due to Charlie Fefferman:

Given a family of norms on the *m*-jet space: $\{|\cdot|_x\}_{x\in\mathbb{R}^n}$ satisfying the Bounded Distortion and Approximate Translation Invariance properties. Then we may define a new family of norms as follows:

$$|P|'_{x} = \inf\{||F||_{C^{m}(\mathbb{R}^{n})} : J_{x}F = P\}, \forall x \in \mathbb{R}^{n}$$

$$\tag{2}$$

Remark 0.4. The *m*-jet space norms defined by (2) are natural. The reasoning goes as follows:

Given a Polynomial P of degree $\leq m$, and given $x \in \mathbb{R}^n$, we must show that:

$$|P|'_{x} = \inf\{||F||'_{C^{m}(\mathbb{R}^{n})} : J_{x}F = P\}, \,\forall x \in \mathbb{R}^{n}.$$
(3)

Where $||F||'_{C^m(\mathbb{R}^n)} := \sup_{x \in \mathbb{R}^n} |J_x F|'_x$.

We note the following:

$$||F||'_{C^m(\mathbb{R}^n)} = \sup_{x \in \mathbb{R}^n} |J_x F|'_x \le ||F||_{C^m(\mathbb{R}^n)}$$

The second inequality follows directly from (2). Now implied by the preceding remarks is the following

$$|P|'_{x} = \inf\{||F||_{C^{m}(\mathbb{R}^{n})} : J_{x}F = P\} \ge \inf\{||F||'_{C^{m}(\mathbb{R}^{n})} : J_{x}F = P\}$$

Note that this is one direction of the equality we wish to prove, and the other direction is trivial. Thus we have shown that the norms $\{|\cdot|'_x\}$ are "natural" m-jet norms.

With these remarks we can now state a reformulation of (0.1) that takes into account this "natural" condition:

Conjecture 0.5. Let $I = \{(x,0) : -1.5 \le x \le 1.5\} \subset \mathbb{R}^2$, and $Q = [-1,1]^2$. Also suppose that we are given a set of polynomials $\{P^z\}_{z \in I}$ satisfying $\inf\{||F||_{C^2(\mathbb{R}^2)} : J_z F = P^z\} \le 1, \forall z \in I$. Also suppose that there exists $F_0 \in C^2(Q)$ such that $J_z(F_0) = P^z, \forall z \in I$. Then given $\epsilon > 0$, there exists $F \in C^2(Q)$ satisfying:

- 1. $J_z(F) = P^z, \forall z \in I.$
- 2. $||F||_{C^2(Q)} \le 1 + \epsilon$.

Note that this conjecture is essentially stating that for this specific setup we have a finiteness number $k_{\epsilon}^{\#} = 1, \forall \epsilon > 0$. Also note that the following condition is probably too strong:

$$\inf\{||F||_{C^2(\mathbb{R}^2)} : J_z F = P^z\} \le 1$$

And should be replaced with something like:

 $\inf\{||F||_{C^2([-2,2]^2)}: J_z F = P^z\} \le 1$