Counterexample for Polynomial Approximation with an order of magnitude bound on the C^m norm

September 7, 2008

Purpose The purpose of the following remarks are to provide a counterexample to a conjecture involving polynomial interpolation with control over the C^m norm. Also I'll pose a possible reformulation of the conjecture which may be true.

Notation We'll fix a C^m -norm given by $||F||_{C^m(X)} = \sup_{x \in X} \max_{|\alpha| \leq m} |F^{\alpha}(x)|$, where $X \subset \mathbb{R}^n$ is a domain, and F is m-times differentiable on X. Though we are now fixing a C^m -norm, the following remarks will hold true for any reasonable C^m -norm. We denote the space of Polynomials over \mathbb{R}^n of degree $\leq D$ by $P_D(\mathbb{R}^n)$. We also denote the n-dimensional cube with center a and sidelength 2l by Q(a, l), dependence on n is to be assumed depending on the context. When we say 'Data' we mean a finite set E, along with a function $f: E \to \mathbb{R}$.

1 The Conjecture

Now we state the conjecture.

Conjecture 1.1. Fix $m \ge 0$, and $n, k \ge 1$. Then there exists D = D(m, n, k), C = C(m, n, k), such that $\forall E \subset Q(0, 1)$ with #(E) = k, and $\forall f : E \to R$ there exists a polynomial $P \in P_D(\mathbb{R}^n)$ satisfying the following properties:

- 1. $P|_E = f$.
- 2. $||P||_{C^m(Q(0,1))} \leq C \inf\{||F||_{C^m(Q(0,1))} : F \in C^m(Q(0,1)), and F|_E = f\}$

The counterexample relies on the following classical inequality.

Theorem 1.2 (Markov's Inequality). Let $P \in P_D(\mathbb{R})$ then

$$\sup_{[-1,1]} |P'| \le \frac{D^2}{2} \sup_{[-1,1]} |P|.$$
(1)

2 The Counterexample

Theorem 2.1. Let $m \ge 0$, and $n \ge 1$ be given. Let k = 2(m+1). Then (1.1) fails for these values of m, n, and k.

Proof. It suffices to consider $m \ge 0$, and n = 1, since the counterexample can be trivially extended to arbitrary $n \ge 1$.

We will let C_i , and D stand for the controlled constants; that is constants that depend only on m, n, and k (Though this dependence will be omitted in what follows.)

We will take ϵ with $0 < \epsilon < \frac{1}{m+1}$ to be fixed later. We now define sets E_{ϵ} , and functions f_{ϵ} .

1.
$$E_{\epsilon} = \{-(m+1)\epsilon, -m\epsilon, ..., -\epsilon, \epsilon, m\epsilon, (m+1)\epsilon\}.$$

2.
$$f_{\epsilon}(x) = -x^m$$
 if $x \in E_{\epsilon} \cap [-1, 0]$, and $f_{\epsilon}(x) = x^m$ if $x \in E_{\epsilon} \cap [0, 1]$.

Now assume that $\exists P_{\epsilon} \in P_D(\mathbb{R})$ satisfying the properties of (1.1) with data E_{ϵ} , and f_{ϵ} . We note the following property of f_{ϵ} :

$$\inf\{||F||_{C^m([-1,1])} : F \in C^m([-1,1]), F|_{E_{\epsilon}} = f_{\epsilon}\} = C_0$$
(2)

And therefore because P_{ϵ} satisfies the conditions of (1.1) we have that:

$$||P_{\epsilon}||_{C^{m}([-1,1])} \leq C \inf\{||F||_{C^{m}([-1,1])} : F \in C^{m}([-1,1]), F|_{E_{\epsilon}} = f_{\epsilon}\} = CC_{0} = C_{1}$$
(3)

Now assume that $\exists P_{\epsilon} \in P_D(\mathbb{R})$ satisfying the properties of (1.1). Then we see by repeated application of the mean value theorem that $\exists x_0 \in [-(m+1)\epsilon, (m+1)\epsilon]$ such that:

$$|P_{\epsilon}^{(m+1)}(x_0)| > \frac{C_1(m)}{\epsilon} \tag{4}$$

Now (1.2), and (3) imply the following:

$$\sup_{[-1,1]} |P_{\epsilon}^{(m+1)}| \leq \frac{D^2}{2} ||P_{\epsilon}^{m}||_{C([-1,1])}$$
$$\leq \frac{D^2}{2} C_1$$
$$= C_2$$
(5)

Fixing $\epsilon < \frac{C_1}{C_2}$, we see that (4) implies the following:

$$\sup_{[-1,1]} |P_{\epsilon}^{(m+1)}| > \frac{C_1}{\epsilon} > C_2 \tag{6}$$

Thus we have a contradiction for any arbitrary $m \ge 0$, and n = 1. To extend this counterexample to arbitrary $n \ge 1$ we can let our counterexample be supported only on the x_1 -axis of \mathbb{R}^n , it is not too hard to check that all the important properties are unaffected by the presence of the additional n - 1 variables.

Thus we have our contradiction for arbitrary $m \ge 0$, $n \ge 1$, and k = 2(m+1).

There is a way to modify the conjecture so that Markov's Inequality doesn't provide such an immediate roadblock. First a definition:

Definition 2.2. Given $\delta > 0$. If $E \subset \mathbb{R}^n$, we say that E is δ -separated if $|x - y| > \delta$, $\forall x, y \in E$ with $x \neq y$.

Now for the proposed conjecture:

Conjecture 2.3. Fix $m \ge 0$, and $n, k \ge 1$. Also, fix $\delta > 0$. Then there exists $D = D(m, n, k, \delta)$, $C = C(m, n, k, \delta)$, such that given $E \subset Q(0, 1)$ which is δ -separated, satisfying #(E) = k, and given $f : E \to \mathbb{R}$. Then there exists a polynomial $P \in P_D(\mathbb{R}^n)$ satisfying the following properties:

- 1. $P|_E = f$.
- 2. $||P||_{C^m(Q(0,1))} \leq C \inf\{||F||_{C^m(Q(0,1))} : F \in C^m(Q(0,1)), and F|_E = f\}$