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Purpose The purpose of the following remarks are to provide a counterexample to a conjec-
ture involving polynomial interpolation with control over the Cm norm. Also I’ll pose a possible
reformulation of the conjecture which may be true.

Notation We’ll fix a Cm-norm given by ||F ||Cm(X) = supx∈X max|α|≤m |Fα(x)|, where X ⊂
Rn is a domain, and F is m-times differentiable on X. Though we are now fixing a Cm-norm,
the following remarks will hold true for any reasonable Cm-norm. We denote the space of
Polynomials over Rn of degree ≤ D by PD(Rn). We also denote the n-dimensional cube with
center a and sidelength 2l by Q(a, l), dependence on n is to be assumed depending on the
context. When we say ’Data’ we mean a finite set E, along with a function f : E → R.

1 The Conjecture

Now we state the conjecture.

Conjecture 1.1. Fix m ≥ 0, and n, k ≥ 1. Then there exists D = D(m,n, k), C = C(m,n, k),
such that ∀E ⊂ Q(0, 1) with #(E) = k, and ∀f : E → R there exists a polynomial P ∈ PD(Rn)
satisfying the following properties:

1. P |E = f .

2. ||P ||Cm(Q(0,1)) ≤ C inf{||F ||Cm(Q(0,1)) : F ∈ Cm(Q(0, 1)), and F |E = f}

The counterexample relies on the following classical inequality.

Theorem 1.2 (Markov’s Inequality). Let P ∈ PD(R) then

sup
[−1,1]

|P ′| ≤ D2

2
sup

[−1,1]
|P |. (1)

2 The Counterexample

Theorem 2.1. Let m ≥ 0, and n ≥ 1 be given. Let k = 2(m + 1). Then (1.1) fails for these
values of m,n, and k.
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Proof. It suffices to consider m ≥ 0, and n = 1, since the counterexample can be trivially
extended to arbitrary n ≥ 1.

We will let Ci, and D stand for the controlled constants; that is constants that depend only
on m, n, and k (Though this dependence will be omitted in what follows.)

We will take ε with 0 < ε < 1
m+1 to be fixed later. We now define sets Eε, and functions fε.

1. Eε = {−(m+ 1)ε,−mε, ...,−ε, ε,mε, (m+ 1)ε}.

2. fε(x) = −xm if x ∈ Eε ∩ [−1, 0], and fε(x) = xm if x ∈ Eε ∩ [0, 1].

Now assume that ∃Pε ∈ PD(R) satisfying the properties of (1.1) with data Eε, and fε.
We note the following property of fε:

inf{||F ||Cm([−1,1]) : F ∈ Cm([−1, 1]), F |Eε = fε} = C0 (2)

And therefore because Pε satisfies the conditions of (1.1) we have that:

||Pε||Cm([−1,1]) ≤ C inf{||F ||Cm([−1,1]) : F ∈ Cm([−1, 1]), F |Eε = fε}
= CC0 = C1 (3)

Now assume that ∃Pε ∈ PD(R) satisfying the properties of (1.1). Then we see by repeated
application of the mean value theorem that ∃x0 ∈ [−(m+ 1)ε, (m+ 1)ε] such that:

|P (m+1)
ε (x0)| > C1(m)

ε
(4)

Now (1.2), and (3) imply the following:

sup
[−1,1]

|P (m+1)
ε | ≤ D2

2
||Pmε ||C([−1,1])

≤ D2

2
C1

= C2 (5)

Fixing ε < C1
C2

, we see that (4) implies the following:

sup
[−1,1]

|P (m+1)
ε | > C1

ε
> C2 (6)

Thus we have a contradiction for any arbitrary m ≥ 0, and n = 1. To extend this counterex-
ample to arbitrary n >= 1 we can let our counterexample be supported only on the x1-axis of
Rn, it is not too hard to check that all the important properties are unaffected by the presence
of the additional n− 1 variables.

Thus we have our contradiction for arbitrary m ≥ 0, n ≥ 1, and k = 2(m+ 1).

There is a way to modify the conjecture so that Markov’s Inequality doesn’t provide such
an immediate roadblock. First a definition:

Definition 2.2. Given δ > 0. If E ⊂ Rn, we say that E is δ-separated if |x− y| > δ, ∀x, y ∈ E
with x 6= y.

Now for the proposed conjecture:
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Conjecture 2.3. Fix m ≥ 0, and n, k ≥ 1. Also, fix δ > 0. Then there exists D = D(m,n, k, δ),
C = C(m,n, k, δ), such that given E ⊂ Q(0, 1) which is δ-separated, satisfying #(E) = k, and
given f : E → R. Then there exists a polynomial P ∈ PD(Rn) satisfying the following properties:

1. P |E = f .

2. ||P ||Cm(Q(0,1)) ≤ C inf{||F ||Cm(Q(0,1)) : F ∈ Cm(Q(0, 1)), and F |E = f}
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