# Counterexample for Polynomial Approximation with an order of magnitude bound on the $C^{m}$ norm 

September 7, 2008

Purpose The purpose of the following remarks are to provide a counterexample to a conjecture involving polynomial interpolation with control over the $C^{m}$ norm. Also I'll pose a possible reformulation of the conjecture which may be true.

Notation We'll fix a $C^{m}$-norm given by $\|F\|_{C^{m}(X)}=\sup _{x \in X} \max _{|\alpha| \leq m}\left|F^{\alpha}(x)\right|$, where $X \subset$ $\mathbb{R}^{n}$ is a domain, and $F$ is $m$-times differentiable on $X$. Though we are now fixing a $C^{m}$-norm, the following remarks will hold true for any reasonable $C^{m}$-norm. We denote the space of Polynomials over $\mathbb{R}^{n}$ of degree $\leq D$ by $P_{D}\left(\mathbb{R}^{n}\right)$. We also denote the $n$-dimensional cube with center $a$ and sidelength $2 l$ by $Q(a, l)$, dependence on $n$ is to be assumed depending on the context. When we say 'Data' we mean a finite set $E$, along with a function $f: E \rightarrow \mathbb{R}$.

## 1 The Conjecture

Now we state the conjecture.
Conjecture 1.1. Fix $m \geq 0$, and $n, k \geq 1$. Then there exists $D=D(m, n, k), C=C(m, n, k)$, such that $\forall E \subset Q(0,1)$ with $\#(E)=k$, and $\forall f: E \rightarrow R$ there exists a polynomial $P \in P_{D}\left(\mathbb{R}^{n}\right)$ satisfying the following properties:

1. $\left.P\right|_{E}=f$.
2. $\|P\|_{C^{m}(Q(0,1))} \leq C \inf \left\{\|F\|_{C^{m}(Q(0,1))}: F \in C^{m}(Q(0,1))\right.$, and $\left.\left.F\right|_{E}=f\right\}$

The counterexample relies on the following classical inequality.
Theorem 1.2 (Markov's Inequality). Let $P \in P_{D}(\mathbb{R})$ then

$$
\begin{equation*}
\sup _{[-1,1]}\left|P^{\prime}\right| \leq \frac{D^{2}}{2} \sup _{[-1,1]}|P| . \tag{1}
\end{equation*}
$$

## 2 The Counterexample

Theorem 2.1. Let $m \geq 0$, and $n \geq 1$ be given. Let $k=2(m+1)$. Then (1.1) fails for these values of $m, n$, and $k$.

Proof. It suffices to consider $m \geq 0$, and $n=1$, since the counterexample can be trivially extended to arbitrary $n \geq 1$.

We will let $C_{i}$, and $D$ stand for the controlled constants; that is constants that depend only on $m, n$, and $k$ (Though this dependence will be omitted in what follows.)

We will take $\epsilon$ with $0<\epsilon<\frac{1}{m+1}$ to be fixed later. We now define sets $E_{\epsilon}$, and functions $f_{\epsilon}$.

1. $E_{\epsilon}=\{-(m+1) \epsilon,-m \epsilon, \ldots,-\epsilon, \epsilon, m \epsilon,(m+1) \epsilon\}$.
2. $f_{\epsilon}(x)=-x^{m}$ if $x \in E_{\epsilon} \cap[-1,0]$, and $f_{\epsilon}(x)=x^{m}$ if $x \in E_{\epsilon} \cap[0,1]$.

Now assume that $\exists P_{\epsilon} \in P_{D}(\mathbb{R})$ satisfying the properties of (1.1) with data $E_{\epsilon}$, and $f_{\epsilon}$.
We note the following property of $f_{\epsilon}$ :

$$
\begin{equation*}
\inf \left\{\|F\|_{C^{m}([-1,1])}: F \in C^{m}([-1,1]),\left.F\right|_{E_{\epsilon}}=f_{\epsilon}\right\}=C_{0} \tag{2}
\end{equation*}
$$

And therefore because $P_{\epsilon}$ satisfies the conditions of (1.1) we have that:

$$
\begin{align*}
\left\|P_{\epsilon}\right\|_{C^{m}([-1,1])} & \leq C \inf \left\{\|F\|_{C^{m}([-1,1])}: F \in C^{m}([-1,1]),\left.F\right|_{E_{\epsilon}}=f_{\epsilon}\right\} \\
& =C C_{0}=C_{1} \tag{3}
\end{align*}
$$

Now assume that $\exists P_{\epsilon} \in P_{D}(\mathbb{R})$ satisfying the properties of (1.1). Then we see by repeated application of the mean value theorem that $\exists x_{0} \in[-(m+1) \epsilon,(m+1) \epsilon]$ such that:

$$
\begin{equation*}
\left|P_{\epsilon}^{(m+1)}\left(x_{0}\right)\right|>\frac{C_{1}(m)}{\epsilon} \tag{4}
\end{equation*}
$$

Now (1.2), and (3) imply the following:

$$
\begin{align*}
\sup _{[-1,1]}\left|P_{\epsilon}^{(m+1)}\right| & \leq \frac{D^{2}}{2}\left\|P_{\epsilon}^{m}\right\|_{C([-1,1])} \\
& \leq \frac{D^{2}}{2} C_{1} \\
& =C_{2} \tag{5}
\end{align*}
$$

Fixing $\epsilon<\frac{C_{1}}{C_{2}}$, we see that (4) implies the following:

$$
\begin{equation*}
\sup _{[-1,1]}\left|P_{\epsilon}^{(m+1)}\right|>\frac{C_{1}}{\epsilon}>C_{2} \tag{6}
\end{equation*}
$$

Thus we have a contradiction for any arbitrary $m \geq 0$, and $n=1$. To extend this counterexample to arbitrary $n>=1$ we can let our counterexample be supported only on the $x_{1}$-axis of $\mathbb{R}^{n}$, it is not too hard to check that all the important properties are unaffected by the presence of the additional $n-1$ variables.

Thus we have our contradiction for arbitrary $m \geq 0, n \geq 1$, and $k=2(m+1)$.

There is a way to modify the conjecture so that Markov's Inequality doesn't provide such an immediate roadblock. First a definition:

Definition 2.2. Given $\delta>0$. If $E \subset \mathbb{R}^{n}$, we say that $E$ is $\delta$-separated if $|x-y|>\delta, \forall x, y \in E$ with $x \neq y$.

Now for the proposed conjecture:

Conjecture 2.3. Fix $m \geq 0$, and $n, k \geq 1$. Also, fix $\delta>0$. Then there exists $D=D(m, n, k, \delta)$, $C=C(m, n, k, \delta)$, such that given $E \subset Q(0,1)$ which is $\delta$-separated, satisfying $\#(E)=k$, and given $f: E \rightarrow \mathbb{R}$. Then there exists a polynomial $P \in P_{D}\left(\mathbb{R}^{n}\right)$ satisfying the following properties:

1. $\left.P\right|_{E}=f$.
2. $\|P\|_{C^{m}(Q(0,1))} \leq C \inf \left\{\|F\|_{C^{m}(Q(0,1))}: F \in C^{m}(Q(0,1))\right.$, and $\left.\left.F\right|_{E}=f\right\}$
